人工晶体学报, 2021, 50 (9): 1633, 网络出版: 2021-11-08  

Mg2Sn机械性质及热电输运性能的第一性原理计算

Mechanical Properties and Thermoelectric Transport Performance of Mg2Sn from First-Principle Calculations
作者单位
福建工程学院材料科学与工程学院,福州 350118
摘要
窄带隙半导体材料Mg2Sn具有丰度大、密度低、无毒及环境友好等特点,是中低温热电材料的优秀候选者。本文基于密度泛函理论,结合不同形式的电子交换关联能系统分析了Mg2Sn晶体的弹性系数、声子振动谱和电子能带结构,并基于非平衡玻尔兹曼输运理论计算了Mg2Sn的热电性能。结果表明,GGA-PBE作为电子交换关联能可以很好地拟合立方相Mg2Sn的力学性能(声子振动谱无虚频率),其体弹性模量为42.1 GPa且各向同性。同时,当工作温度高于300 K,Mg2Sn的德拜温度开始趋于平缓且不高于315 K,表明Mg2Sn在该温度区域内具有低声子热导率。使用B3LYP作为电子交换关联能可以估算Mg2Sn费米能级附近的电子结构,发现价带顶附近存在三重简并态。同时计算结果表明,Mg2Sn p型掺杂下的热电优值(ZT值)优于n型掺杂,可达1.05。本研究结果为进一步优化Mg2Sn热电性能的研究提供借鉴。
Abstract
The narrow-band gap semiconductor Mg2Sn is an excellent candidate for medium and low temperature thermoelectric materials due to its high abundance, low density, non-toxicity and environmental friendliness. Based on density functional theory, the elastic coefficient, phonon vibration spectrum and electron band structure of Mg2Sn crystal were systematically analyzed in combination with different forms of electron exchange correlation energy in this paper. The thermoelectric properties of Mg2Sn were also calculated based on the non-equilibrium Boltzmann transport theory. The results show that GGA-PBE as the electron exchange correlation energy can well fit the mechanical properties of Mg2Sn in cubic, when the phonon vibration spectrum has no virtual frequency, and the bulk elastic modulus of Mg2Sn in cubic is 42.1 GPa and isotropic. Mg2Sn has low phonon thermal conductivity due to the fact that the Debye temperature curve of Mg2Sn tends to flat and no higher than 315 K in the test temperature region above 300 K. The electronic structure near the Fermi level of Mg2Sn can be estimated by using B3LYP as the electron exchange correlation energy,and triple degeneracy states are found near the top of the valence band. Then, the results of the thermoelectric optimal value (ZT value) present that p-type doping Mg2Sn is better than that of n-type doping, which can reach 1.05. The results of this study provide theoretical basis for further improving the thermoelectric properties of Mg2Sn.
参考文献

[1] CHEN H Y, SAVVIDES N. Eutectic microstructure and thermoelectric properties of Mg2Sn[J]. Journal of Electronic Materials, 2010, 39(9): 1792-1797.

[2] CHEN H Y, SAVVIDES N. High quality Mg2Sn crystals prepared by RF induction melting[J]. Journal of Crystal Growth, 2010, 312(16/17): 2328-2334.

[3] SONG R B, AIZAWA T, SUN J Q. Synthesis of Mg2Si1-xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing[J]. Materials Science and Engineering: B, 2007, 136(2/3): 111-117.

[4] LIU W, TANG X F, LI H, et al. Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1-ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration[J]. Journal of Materials Chemistry, 2012, 22(27): 13653.

[5] ZHANG X, LU Q M, WANG L, et al. Preparation of Mg2Si1-xSnx by induction melting and spark plasma sintering, and thermoelectric properties[J]. Journal of Electronic Materials, 2010, 39(9): 1413-1417.

[6] CHEN H Y, SAVVIDES N, DASGUPTA T, et al. Electronic and thermal transport properties of Mg2Sn crystals containing finely dispersed eutectic structures[J]. Physica Status Solidi (a), 2010, 207(11): 2523-2531.

[7] ZAITSEV V K, FEDOROV M I, GURIEVA E A, et al. Highly effective Mg2Si1-xSnx thermoelectrics[J]. Physical Review B, 2006, 74(4): 045207.

[8] LE-QUO C H, LACOSTE A, HLIL E K, et al. Thin films of thermoelectric compound Mg2Sn deposited by co-sputtering assisted by multi-dipolar microwave plasma[J]. Journal of Alloys and Compounds, 2011, 509(41): 9906-9911.

[9] DE BOOR J, SAPARAMADU U, MAO J, et al. Thermoelectric performance of Li doped, p-type Mg2(Ge, Sn) and comparison with Mg2(Si, Sn)[J]. Acta Materialia, 2016, 120: 273-280.

[10] DE BOOR J, DASGUPTA T, KOLB H, et al. Microstructural effects on thermoelectric efficiency: a case study on magnesium silicide[J]. Acta Materialia, 2014, 77: 68-75.

[11] SANKHLA A, PATIL A, KAMILA H, et al. Mechanical alloying of optimized Mg2(Si, Sn) solid solutions: understanding phase evolution and tuning synthesis parameters for thermoelectric applications[J]. ACS Applied Energy Materials, 2018, 1(2): 531-542.

[12] TANI J I, KIDO H. Impurity doping into Mg2Sn: a first-principles study[J]. Physica B: Condensed Matter, 2012, 407(17): 3493-3498.

[13] 刘娜娜,宋仁伯,孙翰英,等.Mg2Sn电子结构及热力学性质的第一性原理计算[J].物理学报,2008,57(11):7145-7150.

[14] REN H, HU W C, LI D J, et al. Atomic relaxation, stability and electronic properties of Mg2Sn (100) surfaces from ab-initio calculations[J]. Journal of Magnesium and Alloys, 2016, 4(1): 62-67.

[15] JIN Y R, FENG Z Z, YE L Y, et al. Mg2Sn: a potential mid-temperature thermoelectric material[J]. RSC Advances, 2016, 6(54): 48728-48736.

[16] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570.

[17] WYCKOFF R W G. Fluorite structure Crystal Structures[M]. New York: Interscience Publishers, 1963, 1: 239-444.

[18] DAVIS L C, WHITTEN W B, DANIELSON G C. Elastic constants and calculated lattice vibration frequencies of Mg2Sn[J]. Journal of Physics and Chemistry of Solids, 1967, 28(3): 439-447.

[19] GANESHAN S, SHANG S L, ZHANG H, et al. Elastic constants of binary Mg compounds from first-principles calculations[J]. Intermetallics, 2009, 17(5): 313-318.

[20] ZHOU D W, LIU J S, XU S H, et al. Thermal stability and elastic properties of Mg2X (X=Si, Ge, Sn, Pb) phases from first-principle calculations[J]. Computational Materials Science, 2012, 51(1): 409-414.

[21] ONG K P, SINGH D J, WU P. Analysis of the thermoelectric properties of n-type ZnO[J]. Physical Review B, 2011, 83(11): 115110.

陈松, 毛文蔚, 王卫国. Mg2Sn机械性质及热电输运性能的第一性原理计算[J]. 人工晶体学报, 2021, 50(9): 1633. CHEN Song, MAO Wenwei, WANG Weiguo. Mechanical Properties and Thermoelectric Transport Performance of Mg2Sn from First-Principle Calculations[J]. Journal of Synthetic Crystals, 2021, 50(9): 1633.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!