半导体光电, 2023, 44 (4): 556, 网络出版: 2023-11-26  

Alq基有机发光二极管中Liq的“n型掺杂”机理研究

Mechanism of Liqs “N-Type Doping” in Alq Based Organic Light-Emitting Diodes
作者单位
1 兰州理工大学 材料科学与工程学院
2 兰州理工大学 理学院,兰州 730050
摘要
通过将Liq(8-hydroxyquinolinato-lithium)掺入电子传输层Alq(tris(8-hydroxyquinolinato)aluminum)中,制备了具有不同结构的仅传输电子的单载流子器件。实验结果表明,掺杂器件的电性能劣于含Liq/Al复合阴极的非掺杂器件,优于含Al阴极的非掺杂器件,这表明掺入Alq的Liq没有产生明显的“n型掺杂”效应,其具有双重作用:掺杂后分散在Alq/Al阴极界面上的Liq以电子注入层的形式出现,通过增强电子注入来提高器件电流;掺杂后存在于Alq体相中的Liq由于自身的导电性差,对电子传输具有不利影响,从而降低了器件的电流。在电致发光器件的测试中,Liq的掺杂表现出类似的现象,掺入Liq的器件性能介于非掺杂具有Liq/Al阴极和Al阴极结构器件之间,三种器件的最大电流效率分别为3.96,4.27和2.27 cd/A,并且在吸收光谱和光致发光光谱中观察不到电荷转移所带来的额外变化。
Abstract
Electron-only devices with different structures were prepared by doping Liq (8-hydroxyquinolinato-lithium) into the electron transport layer Alq (tris(8-hydroxyquinolinato) aluminum). The experimental results show that the electrical properties of doped devices are inferior to those of non-doped devices with Liq/Al composite cathodes and superior to those of non-doped devices with Al only cathodes. This indicates that Liq’s doped with Alq does not show any significant “n-doping” effect. The effect exhibits dual roles: Liq molecules dispersed at the Alq/Al cathode interfaces after doping display as electron injection layers, which enhances the device currents by enhancing electron injection; those in the bulk of Alq after doping have a detrimental effect on electron transport due to their own poor conductivity, consequently decrease the device currents. In the tests of electroluminescent devices, the doping of Liq shows a similar behavior. The performance of Liq-doped device is between the non-doped devices with Liq/Al cathode and Al cathode structures, with maximum current efficiencies of 3.96, 4.27 and 2.27 cd/A for the three devices, respectively, and no additional changes caused by charge transfer are observed in the absorption and photoluminescent spectra.
参考文献

[1] Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett.,1987, 51(12): 913-915.

[2] Hong G, Gan X, Leonhardt C, et al. A brief history of OLEDs-emitter development and industry milestones[J]. Adv. Mater., 2021, 33(9): 2005630.

[3] Lüssem B, Keum C M, Kasemann D, et al. Doped organic transistors[J]. Chem. Rev., 2016, 116(22): 13714-13751.

[4] Huang J, Pfeiffer M, Werner A, et al. Low-voltage organic electroluminescent devices using pin structures[J]. Appl. Phys. Lett., 2002, 80(1): 139-141.

[5] Oyamada T, Sasabe H, Adachi C, et al. Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer[J]. Appl. Phys. Lett., 2005, 86(3): 033503.

[6] Lee J H, Kim J J. Interfacial doping for efficient charge injection in organic semiconductors[J]. Phys. Status Solidi A, 2012, 209(8): 1399-1413.

[7] Lüssem B, Riede M, Leo K. Doping of organic semiconductors[J]. Phys. Status Solidi A, 2013, 210(1): 9-43.

[8] Bin Z Y, Duan L, Qiu Y. Air stable organic salt as an n-type dopant for efficient and stable organic light-emitting diodes[J]. ACS Appl. Mater. Interfaces, 2015, 7(12): 6444-6450.

[9] Salzmann I, Heimel G, Oehzelt M, et al, Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules[J]. ACC. Chem. Res., 2016, 49(3): 370-378.

[10] Bin Z Y, Liu Z Y, Qiu Y, et al. Efficient n-dopants and their roles in organic electronics[J]. Adv. Opt. Mater., 2018, 6(18): 1800536.

[11] Parthasarathy G, Shen C, Kahn A, et al. Lithium doping of semiconducting organic charge transport materials[J]. J. Appl. Phys., 2001, 89(9): 4986-4992.

[12] Lee J H, Wu M H, Chao C C, et al. High efficiency and long lifetime OLED based on a metal-doped electron transport layer[J]. Chem. Phys. Lett., 2005, 416(4/6): 234-237.

[13] Choudhury K R, Yoon J, So F. LiF as an n-dopant in tris(8-hydroxyquinoline) aluminum thin films[J]. Adv. Mater., 2008, 20(8): 1456-1461.

[14] Kao P C, Lin J H, Wang J Y, et al. Li2CO3 as an n-type dopant on Alq3-based organic light emitting devices[J]. J. Appl. Phys., 2011, 109(9): 094505.

[15] Wei H X, Ou Q D, Zhang Z, et al. The role of cesium fluoride as an n-type dopant on electron transport layer in organic light-emitting diodes[J]. Org. Electron., 2013, 14(3): 839-844.

[16] Deng Y H, Li Y Q, Ou Q D, et al. The doping effect of cesium-based compounds on carrier transport and operational stability in organic light-emitting diodes[J]. Org. Electron., 2014, 15(6): 1215-1221.

[17] Chu X B, Guan M, Niu L T, et al. The utilization of low-temperature evaporable CsN3-doped NBphen as an alternative and efficient electron-injection layer in OLED[J]. Phys. Status Solidi A, 2014, 211(7): 1605-1609.

[18] Tsai C T, Liu Y H, Kao P C, et al. 2-Methyl-9, 10-bis (naphthalen-2-yl) anthracene doped lithium carbonate as an effective electron injecting layer for both inverted and conventional organic light-emitting diode structures[J]. ECS J. Solid State Sci. Technol., 2020, 9(5): 056001.

[19] Cho K, Cho S W, Jeon P E, et al. Energy level alignments at tris(8-hydroquinoline) aluminum/8-hydroquinolatolithium/aluminum interfaces[J]. Appl. Phys. Lett., 2008, 92(9): 093304.

[20] 吴有智, 郑新友, 朱文清, 等. 锂喹啉配合物作为电子注入层对有机电致发光器件性能的影响[J]. 光学学报, 2004, 24(4): 553-557.

[21] Gao C H, Zhu X Z, Zhang L, et al. Comparative studies on the inorganic and organic p-type dopants in organic light emitting diodes with enhanced hole injection[J]. Appl. Phys. Lett., 2013, 102(15): 153301.

[22] Lee S H, Huseynova G, Choi H K, et al. Analysis of charge transfer complex at the interface between organic and inorganic semiconductors[J]. Org. Electron., 2021, 88: 106001.

[23] Juang F S, Chittawanij A, Hong L A, et al. The study of n-type doping and stamping transfer processes of electron transport layer for organic light-emitting diodes[J]. IEICE Trans. Electron., 2015, 98(2): 66-72.

[24] Kumar A, Srivastava R, Tyagi P, et al. Effect of doping of 8-hydroxyquinolinatolithium on electron transport in tris(8-hydroxyquinolinato) aluminum[J]. J. Appl. Phys., 2011, 109(11): 114511.

[25] Tyagi P, Srivastava R, Kumar A, et al. Low voltage organic light emitting diode using p-i-n structure[J]. Synth. Met., 2010, 160(9/10): 1126-1129.

[26] Kim H M, Seo J H, Han W K, et al. Improvement of mixed electron transport structure red phosphorescent organic light-emitting diodes[J]. Mo. Cryst. Liq. Cryst., 2011, 538(1): 53-60.

[27] Soman A, Unni K N N. Enhancement in electron transport and exciton confinement in OLEDs: role of n-type doping and electron blocking layers[J]. Eur. Phys. J.-Appl. Phys., 2019, 86(1): 10201.

[28] Yuan Y, Grozea D, Han S, et al. Interaction between organic semiconductors and LiF dopant[J]. Appl. Phys. Lett., 2004, 85(21): 4959-4961.

[29] Bulovic V, Shoustikov A, Baldo M A, et al. Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts[J]. Chem. Phys. Lett., 1998, 287(3/4): 455-460.

[30] Mahdiyar R, Fadavieslam M R. The effects of chemical treatment on ITO properties and performance of OLED devices[J]. Opt. Quant. Electron., 2020, 52(5): 262.

[31] 刘 丹, 朱 洁, 龚千寻, 等. 利用8-羟基喹啉锂作电子注入层以提高有机发光器件的发光效率[J]. 光散射学报, 2018, 30(4): 388-394.

苏江森, 吴有智, 邹文静, 张材荣. Alq基有机发光二极管中Liq的“n型掺杂”机理研究[J]. 半导体光电, 2023, 44(4): 556. SU Jiangsen, WU Youzhi, ZOU Wenjing, ZHANG Cairong. Mechanism of Liqs “N-Type Doping” in Alq Based Organic Light-Emitting Diodes[J]. Semiconductor Optoelectronics, 2023, 44(4): 556.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!