激光与光电子学进展, 2015, 52 (1): 011401, 网络出版: 2014-12-29  

基于强耦合作用的纳腔阵列激射特性研究

Study of Lasing Characteristics in Strongly Coupled Nano-Cavity Array
作者单位
1 六安职业技术学院, 安徽六安237100
2 中国科学与技术大学, 安徽合肥230022
摘要
金属纳米颗粒具有优异的局域增强效应,通过合理设计阵列结构,使得阵列结构的布洛赫波与单个粒子局域等离子共振(LSPR)耦合,形成阵列结构的表面晶格等离子共振(SLR),能够获得较小的模式体积、较大的品质因数和较高的自发辐射效率。菱形结构的纳米粒子能够有效的集聚电荷,形成较强的偶极子共振,具有优异的激光发射特性、较低的激光阈值和较高的空间一致性。
Abstract
The metal nanoparticles have excellent local enhancements. The Bloch wave of the array structure couples with single particle localized surface- plasma resonances (LSPRs) by designing array structure, forming arrays support surface lattice resonances (SLRs),which can obtained a larger quality factor and small pattern volume and increased the efficiency of the spontaneous emission. Diamond structure of nanoparticles can effectively gather charge, form a strong dipole resonance, which can achieve excellent characteristics including lower lasing threshold and higher spatial coherence.
参考文献

[1] 张胤, 王青. 自动稳频半导体激光器研究[J]. 中国激光, 2014, 41(6): 0602001.

    Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser [J]. Chinese J Lasers, 2014, 41(6): 0602001.

[2] Matsubara H, Yoshimoto S, Saito H, et al.. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths[J].Science, 2008, 319(5862): 445-447.

[3] Englund D, Altug H, Ellis B, et al.. Ultrafast photonic crystal lasers[J]. Laser & Photonics Reviews, 2008, 2(4): 264-274.

[4] Zhou W, Dridi M, Suh J Y, et al.. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature nanotechnology, 2013, 8(7): 506-511.

[5] 吕社钦, 李超然, 吴越豪, 等. 硫系玻璃微纳光器件研究进展[J]. 激光与光电子学进展, 2014, 51(5): 050001.

    Lu Sheqin, Li Chaoran, Wu Yuehao, et al.. Research progress of micro/nano-optical device based on chalcogenide glass[J]. Lasers & Optoelectronics Progress, 2014, 51(5): 050001.

[6] Mayer K M, Lee S, Liao H, et al.. A label- free immunoassay based upon localized surface plasmon resonance of gold nanorods[J]. Acs Nano, 2008, 2(4): 687-692.

[7] Sherry L J, Chang S H, Schatz G C, et al.. Localized surface plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Letters, 2005, 5(10): 2034-2038.

[8] Ashkin A, Dziedzic J M, Bjorkholm J E, et al.. Observation of a single- beam gradient force optical trapfor dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.

[9] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

[10] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single- molecule fluorescence[J]. Physical Review Letters, 2006, 96(11): 113002.

[11] Altug H, Englund D, Vuc kovic J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488.

[12] Noginov M A, Zhu G, Belgrave A M, et al.. Demonstration of a spaser- based nanolaser[J]. Nature, 2009, 460(7259):1110-1112.

[13] Auguié B, Barnes W L. Collective resonances in gold nanoparticle arrays[J]. Physical Review Letters, 2008, 101(14):143902.

[14] Hessel A, Oliner A A. A new theory of Wood′s anomalies on optical gratings[J]. Applied Optics, 1965, 4(10): 1275-1297.

[15] Raether H. Surface plasmons on gratings[J]. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1988,111: 91-116.

[16] 桑田, 蔡托, 刘晓春, 等. 一维亚波长光栅等效折射率描述光栅光谱特性的有效性研究[J]. 激光与光电子学进展, 2011,48(10): 100501.

    Sang Tian, Cai Tuo, Liu Xiaochun, et al.. Study on validity of effective refractive indices of one- dimensional subwavelength gratings on grating spectral properties[J]. Laser & Optoelectronics Progress, 2011, 48(10): 100501.

[17] Chu Y, Schonbrun E, Yang T, et al.. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays[J]. Applied Physics Letters, 2008, 93(18): 181108.

[18] Nagra A S, York R A. FDTD analysis of wave propagation in nonlinear absorbing and gain media[J]. Antennas and Propagation, IEEE Transactions on, 1998, 46(3): 334-340.

[19] Yee K S. Numerical solution of initial boundary value problems involving Maxwell′ s equations in isotropic media[J].IEEE Trans Antennas Propag, 1966, 14(3): 302-307.

[20] Chang S H, Taflove A. Finite- difference time- domain model of lasing action in a four-level two-electron atomic system[J]. Optics Express, 2004, 12(16): 3827-3833.

[21] Yamilov A, Chang S H, Burin A, et al.. Field and intensity correlations in amplifying random media[J]. Physical Review B, 2005, 71(9): 092201.

李棚, 张铖, 倪远, 岳文成, 王贯, 傅强. 基于强耦合作用的纳腔阵列激射特性研究[J]. 激光与光电子学进展, 2015, 52(1): 011401. Li Peng, Zhang Cheng, Ni Yuan, Yue Wencheng, Wang Guan, Fu Qiang. Study of Lasing Characteristics in Strongly Coupled Nano-Cavity Array[J]. Laser & Optoelectronics Progress, 2015, 52(1): 011401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!