硅酸盐通报, 2023, 42 (6): 2161, 网络出版: 2023-11-20  

SiC与耐热钢在高温真空中的界面反应机制研究

Interfacial Reaction Mechanism of Silicon Carbide and Heat Resistant Steel in High-Temperature Vacuum
作者单位
1 郑州大学材料科学与工程学院, 郑州 450001
2 洛阳理工学院材料科学与工程学院, 洛阳 471023
摘要
碳化硅陶瓷可用作镁冶炼还原钢罐的内衬。在真空和1 200 ℃条件下, 通过扩散偶试验, 对SiC与耐热钢的界面反应进行了系统研究。结果表明, 在反应初期, 界面反应的主要产物为金属硅化物和石墨, 其中分布在界面的片状石墨阻碍了界面反应。由于界面上低熔点硅镍化合物的熔化, 片状石墨在Ni的催化作用下转变为纤维状石墨, 失去了对碳化硅的保护作用。界面反应由固-固反应转变为固-液反应, 界面反应过程加快, 加速了钢对碳化硅的侵蚀。与耐热钢相比, SiC与纯铁的界面反应速率明显降低, 金属熔化所需温度也显著升高。减少耐热钢中的Ni含量, 可以有效阻止耐热钢和SiC之间的反应。
Abstract
Silicon carbide (SiC) ceramics can be used as inner lining of reduction tank for magnesium smelting. The interfacial reaction between SiC and heat resistant steel was systematically investigated by diffusion couple experiment under vacuum and 1 200 ℃. The results show that at the early stage of reaction, the main products of interfacial reaction are metal silicide and graphite, and the lamellar graphite distributing at the interface hinders the interfacial reaction. However, due to the melting of silicon-nickel compounds with low melting point at interface, the lamellar graphite is transformed into fibrous graphite under the catalysis of Ni, losing its protective effect on silicon carbide. In addition, the interface reaction changes from solid-solid reaction to solid-liquid reaction, and the interfacial reaction process is accelerated, which accelerates the corrosion of silicon carbide by steel. Compared with heat resistant steel, the interfacial reaction rate between SiC and pure iron is obviously decreased, and the temperature required for the reaction is obviously increased. Reducing Ni content in heat resistant steel can effectively prevent the reaction between heat resistant steel and SiC.
参考文献

[1] LI T, ZHANG Y L, LI J C, et al. Improved mechanical strength and oxidation resistance of SiC/ SiC-MoSi2-ZrB2 coated C/C composites by a novel strategy [J]. Corrosion Science, 2022, 205: 10.

[2] LIU G W, ZHANG X Z, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior[J]. Journal of Advanced Ceramics, 2019, 8(1): 19-38.

[3] CAO L, WANG J, LIU Y, et al. Effect of heat transfer channels on thermal conductivity of silicon carbide composites reinforced with pitch-based carbon fibers[J]. Journal of the European Ceramic Society, 2022, 42(2): 420-431.

[4] GOMEZ E, ECHEBERRIA J, ITURRIZA I, et al. Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2[J]. Journal of the European Ceramic Society, 2004, 24(9): 2895-2903.

[5] SHISHKIN R A, YUFEROV Y V, KARAGERGI R P, et al. Microstructural and mechanical properties of pressureless sintered high-wear-resistant SiC composite materials[J]. Journal of the Korean Ceramic Society, 2023, 60: 75-89.

[6] WANG Y, XU X, ZHAO W X, et al. Damage accumulation during high temperature fatigue of Ti/SiCf metal matrix composites under different stress amplitudes[J]. Acta Materialia, 2021, 213: 116976.

[7] BAKER T N, MUOZ-DE ESCALONA P, OLASOLO M, et al. Role of preplaced silicon on a TIG processed SiC incorporated microalloyed steel[J]. Materials Science and Technology, 2020, 36(12): 1349-1363.

[8] HOWE J M. Bonding, structure, and properties of metal/ceramic interfaces: part 1 chemical bonding, chemical reaction, and interfacial structure[J]. International Materials Reviews, 1993, 38(5): 233-256.

[9] WANG Z, WYNBLATT P. Wetting and energetics of solid Au and Au-Ge/SiC interfaces[J]. Acta Materialia, 1998, 46(14): 4853-4859.

[10] BUGDAYCI M, TURAN A, ALKAN M, et al. Effect of reductant type on the metallothermic magnesium production process[J]. High Temperature Materials and Processes, 2018, 37(1): 1-8.

[11] ABBOTT T B. Magnesium: industrial and research developments over the last 15 years[J]. Corrosion, 2015, 71(2): 120-127.

[12] LIAO N, QIU B F, MITHUN N, et al. Effects of nano ZrO2 content on the comprehensive properties of BN-SiC composites[J]. Journal of Alloys and Compounds, 2020, 81: 152180.

[13] LI J Y, RU H Q, YANG H, et al. Liquid-solid reactions and microstructure of SiC-5120 steel composite brake material[J]. Metallurgical and Materials Transactions A, 2012, 43(2): 658-664.

[14] TERRY B S, CHINYAMAKOBVU O S. Assessment of the reaction of SiC powders with iron-based alloys[J]. Journal of Materials Science, 1993, 28(24): 6779-6784.

[15] CHOU T C, JOSHI A. Selectivity of silicon carbide/stainless steel solid-state reactions and discontinuous decomposition of silicon carbide[J]. Journal of the American Ceramic Society, 1991, 74(6): 1364-1372.

[16] TANG W M, ZHENG Z X, DING H F, et al. A study of the solid state reaction between silicon carbide and iron[J]. Materials Chemistry and Physics, 2002, 74(3): 258-264.

[17] BHANUMURTHY K, SCHMID-FETZER R. Interface reactions between silicon carbide and metals (Ni, Cr, Pd, Zr)[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(3/4): 569-574.

[18] CHOU T C, JOSHI A, WADSWORTH J. Solid state reactions of SiC with Co, Ni, and Pt[J]. Journal of Materials Research, 1991, 6(4): 796-809.

[19] MARTINELLI A E, DREW R A L, BERRICHE R. Correlation between the strength of SiC-Mo diffusion couples and the mechanical properties of the interfacial reaction products[J]. Journal of Materials Science Letters, 1996, 15(4): 307-310.

[20] CAMARANO A, NARCISO J, GIURANNO D. Solid state reactions between SiC and Ir[J]. Journal of the European Ceramic Society, 2019, 39(14): 3959-3970.

[21] NGAI T W L, HU C X, ZHENG W, et al. High temperature stability of SiC/Ti interface[J]. Materials Science Forum, 2011, 685: 340-344.

[22] GEIB K M, WILSON C, LONG R G, et al. Reaction between SiC and W, Mo, and Ta at elevated temperatures[J]. Journal of Applied Physics, 1990, 68(6): 2796-2800.

[23] TANG W M, ZHENG Z X, DING H F, et al. Control of the interface reaction between silicon carbide and iron[J]. Materials Chemistry and Physics, 2003, 80(1): 360-365.

[24] SCHIEPERS R C J, VAN BEEK J A, VAN LOO F J J, et al. The interaction between SiC and Ni, Fe, (Fe, Ni) and steel: morphology and kinetics[J]. Journal of the European Ceramic Society, 1993, 11(3): 211-218.

[25] BACKHAUS-RICOULT M. Solid state reactions between silicon carbide and (Fe, Ni, Cr)-alloys: reaction paths, kinetics and morphology[J]. Acta Metallurgica et Materialia, 1992, 40: S95-S103.

[26] ANTILL J E, WARBURTON J B. Active to passive transition in the oxidation of SiC[J]. Corrosion Science, 1971, 11(6): 337-342.

[27] RADTKE C, BRANDO R V, PEZZI R P, et al. Characterization of SiC thermal oxidation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2002, 190(1/2/3/4): 579-582.

[28] PARK J S, LANDRY K, PEREPEZKO J H. Kinetic control of silicon carbide/metal reactions[J]. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 1999, 259(2): 279-86.

[29] PARK J S, CHO J, YI S, et al. Practical application of diffusion pathway analysis for SiC-metal reactions[J]. Metals and Materials International, 2006, 12(3): 231-238.

[30] SCHIEPERS R C J, LOO F J J, WITH G. Reactions between alpha-silicon carbide ceramic and nickel or iron[J]. Journal of the American Ceramic Society, 1988, 71(6): C-284.

[31] NIKOLAYCHUK P A, TYURIN A G. Thermodynamic assessment of chemical and electrochemical stability of nickel-silicon system alloys[J]. Corrosion Science, 2013, 73: 237-244.

[32] LACAZE J, SUNDMAN B. An assessment of the Fe-C-Si system[J]. Metallurgical Transactions A, 1991, 22(10): 2211-2223.

[33] INAGAKI M, FUJITA K, TAKEUCHI Y, et al. Formation of graphite crystals at 1 000~1 200 ℃ from mixtures of vinyl polymers with metal oxides[J]. Carbon, 2001, 39(6): 921-929.

[34] RASTEGAR H, BAVAND-VANDCHALI M, NEMATI A, et al. Catalytic graphitization behavior of phenolic resins by addition of in situ formed nano-Fe particles[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101: 50-61.

[35] TANG W M, ZHENG Z X, WU Y C, et al. Interface stability of the SiC particles/Fe matrix composite system[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2006, 21(3): 49-53.

[36] NEVES G O, ARAYA N, BIASOLI DE MELLO J D, et al. Synthesis of nanostructured carbon derived from the solid-state reaction between iron and boron carbide[J]. Materials Chemistry and Physics, 2022, 276: 125396.

[37] JOHNSON D F, CARTER E A. Bonding and adhesion at the SiC/Fe interface[J]. The Journal of Physical Chemistry A, 2009, 113(16): 4367-4373.

谢莹莹, 陈毛, 宋子杰, 范冰冰, 张锐, 陈勇强. SiC与耐热钢在高温真空中的界面反应机制研究[J]. 硅酸盐通报, 2023, 42(6): 2161. XIE Yingying, CHEN Mao, SONG Zijie, FAN Bingbing, ZHANG Rui, CHEN Yongqiang. Interfacial Reaction Mechanism of Silicon Carbide and Heat Resistant Steel in High-Temperature Vacuum[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2161.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!