作者单位
摘要
郑州大学材料科学与工程学院,郑州 450001
吸波材料是指能吸收或者大幅减弱其表面接收到的电磁波能量,从而减少电磁波干扰的一类材料。近年来对吸波材料的探索中出现各种高熵陶瓷吸波材料,通过热力学的高熵效应、结构的晶格畸变效应、动力学的迟滞扩散效应以及组元的协同增效作用,获得高熵陶瓷材料的吸波性能优于单组元的吸波性能。基于近年来的研究成果,本文归纳总结了不同种类高熵吸波陶瓷的组元设计、制备与吸波性能关系的相关研究结果,分析了高熵效应对吸波性能的影响规律,最后,总结了目前研究工作中存在的关键科学难题与挑战,并展望了高熵吸波陶瓷的未来前景和发展方向。
高熵吸波材料 磁损耗 介电损耗 吸波性能 high-entropy wave-absorbing materials magnetic loss dielectric loss microwave-absorbing properties 
硅酸盐学报
2023, 51(12): 3204
作者单位
摘要
1 郑州大学材料科学与工程学院, 郑州 450001
2 洛阳理工学院材料科学与工程学院, 洛阳 471023
碳化硅陶瓷可用作镁冶炼还原钢罐的内衬。在真空和1 200 ℃条件下, 通过扩散偶试验, 对SiC与耐热钢的界面反应进行了系统研究。结果表明, 在反应初期, 界面反应的主要产物为金属硅化物和石墨, 其中分布在界面的片状石墨阻碍了界面反应。由于界面上低熔点硅镍化合物的熔化, 片状石墨在Ni的催化作用下转变为纤维状石墨, 失去了对碳化硅的保护作用。界面反应由固-固反应转变为固-液反应, 界面反应过程加快, 加速了钢对碳化硅的侵蚀。与耐热钢相比, SiC与纯铁的界面反应速率明显降低, 金属熔化所需温度也显著升高。减少耐热钢中的Ni含量, 可以有效阻止耐热钢和SiC之间的反应。
耐热钢 界面 石墨 固相反应 SiC SiC heat resistant steel interfacial graphite solid phase reaction 
硅酸盐通报
2023, 42(6): 2161
李德鹏 1,*严智楷 1赵彪 1关莉 1[ ... ]张锐 1,2,3
作者单位
摘要
1 郑州航空工业管理学院材料学院,郑州 450046
2 郑州大学材料科学与工程学院,郑州 450001
3 洛阳理工学院,河南 洛阳 471023
以高熵合金的研究为背景,将构型熵稳定单相的概念引入无机非金属材料,而逐步发展出一种新的陶瓷材料体系——高熵陶瓷。高熵陶瓷的优点是成分和结构的多样性,这使得其有潜能成为广泛应用的功能材料。本工作采用简单易行的固相烧结法合成了具有尖晶石结构和钙钛矿结构的高熵复相陶瓷,并进一步研究了其物相组成、显微结构、元素含量及价态、和电磁波吸收性能,探究了高熵复相陶瓷的吸波性能随烧结温度的变化规律。结果表明:高熵复相陶瓷可成功制备成型,通过高熵效应能够烧结出2种晶体结构(尖晶石结构和钙钛矿结构)。在1 300 ℃的烧结温度下,存在最大的介电常数,在频率范围为X波段8.2~12.4 GHz时,具备最佳的电磁波吸收性能。
高熵陶瓷 尖晶石结构 钙钛矿结构 介电损耗 电磁波吸收性能 high-entropy ceramics spinel structure perovskite structure dielectric loss electromagnetic wave absorption property 
硅酸盐学报
2022, 50(6): 1489

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!