人工晶体学报, 2023, 52 (2): 196, 网络出版: 2023-03-18  

碲锌镉器件技术进展及其在SPECT中的应用

Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT
作者单位
1 上海健康医学院上海市分子影像学重点实验室,上海 201318
2 上海健康医学院医学影像学院,上海 201318
3 海军军医大学第一附属医院,上海 200433
4 上海交通大学医学院附属瑞金医院核医学科,上海 200020
摘要
核医学成像设备中的探测器是整个设备的核心部件。基于闪烁体探测器的核医学成像设备存在光电转换效率低和能量分辨率差等关键问题,短期内难以有效解决。而近年来碲锌镉半导体探测器的发展使得核医学成像设备在能量分辨率和空间分辨率等方面取得了很大的提高。本文以单光子发射计算机断层成像(SPECT)技术为例,首先介绍了核医学成像原理及设备组成,然后从碲锌镉探测器的工作原理及基本结构出发,综述了碲锌镉探测器的新技术及其在临床核医学的应用,最后结合核医学领域应用的需求展望了碲锌镉探测器的研究重点和技术发展趋势。
Abstract
Radiation detector is one of the most important components for nuclear medicine imaging equipment like single photon emission computed tomography (SPECT). Among different types of detection technologies, scintillator detectors are the most extensively used ones, but associated with some problems including slow imaging speed and poor image quality which are inherent and difficult to solve. In recent years, the advancement of new semiconductor detection technologies such as cadmium zinc telluride (CdZnTe) detectors have greatly improved the energy and spatial resolving capability of nuclear medicine imaging equipment. Based on the introduction of the working principle and main parts of nuclear medicine equipment, this paper uses the SPECT as an example to review the advancement of the CdZnTe detectors including the performance improvement in clinical nuclear medicine, and finally points out the potential research and development trends of CdZnTe detectors demanded by the nuclear medicine clinical applications.
参考文献

[1] 周纯武. 现代医学影像科管理发展与进步[J]. 放射学实践, 2013, 28(6): 613-615.

[2] 王丽梅. 核医学在甲状腺癌诊断和治疗中的价值分析[J]. 中国卫生标准管理, 2021, 12(6): 88-90.

[3] 陈 飚, 陈春晖. 放射诊疗设备“重要部件”的界定[J]. 中国辐射卫生, 2021, 30(5): 616-619.

[4] 武 蕊, 范东海, 康 阳, 等. 半导体辐射探测材料与器件研究进展[J]. 人工晶体学报, 2021, 50(10): 1813-1829.

[5] 何 杰, 马 羽, 袁小平, 等. 核医学成像探测器及晶体材料的研究进展[J]. 压电与声光, 2018, 40(3): 460-469.

[6] 张秋实, 卢闫晔, 谢肇恒, 等. 用于医学成像的碲锌镉单极型探测器研究进展[J]. 半导体光电, 2013, 34(2): 171-179.

[7] 查钢强, 王 涛, 徐亚东, 等. 新型CZT半导体X射线和γ射线探测器研制与应用展望[J]. 物理, 2013, 42(12): 862-869.

[8] BRADFORD B H. CdZnTe arrays for nuclear medicine imaging[J]. Health Sciences Ctr/Univ of Arizona, 1996, 2859:26-28.

[9] GAO X Y. Large-area CdZnTe thick film based array X-ray detector[J]. Vacuum, 2021, 183: 109855.

[10] KE S Y, LIN S M, MAO D F, et al. Design of wafer-bonded structures for near room temperature Geiger-mode operation of germanium on silicon single-photon avalanche photodiode[J]. Applied Optics, 2017, 56(16): 4646-4653.

[11] 苗渊浩, 王桂磊, 孔真真, 等. CVD外延锗锡及其光电探测器最新研究进展[J]. 微纳电子与智能制造, 2021, 3(1): 129-135.

[12] 陈炜佳, 石洪成. 碲锌镉心脏专用SPECT的临床应用进展[J]. 国际放射医学核医学杂志, 2020, 44(6): 394-398.

[13] LUKE P N, AMMAN M, LEE J S. Factors affecting energy resolution of coplanar-grid CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1199-1203.

[14] 范 磊, 左亮周, 陈祥磊, 等. 碲锌镉探测器中子探测性能研究[J]. 核电子学与探测技术, 2019, 39(4): 463-467.

[15] 张嘉泓, 张继军, 王林军, 等. 移动加热器法生长碲锌镉晶体的组分输运与界面形貌研究[J]. 人工晶体学报, 2022, 51(6): 973-985

[16] 折伟林, 李 乾, 刘江高, 等. 碲锌镉晶体定向研究[J]. 红外, 2022, 43(1): 1-5.

[17] 黄 哲, 伍思远, 陈柏杉, 等. 探测器级碲锌镉晶体生长及缺陷研究进展[J]. 中国有色金属学报, 2022, 32(8): 2327-2344.

[18] 范 鹏. 先进核医学影像探测器的位置和能量性能优化研究[D]. 北京: 清华大学, 2016.

[19] 傅楗强. 单极性电荷灵敏技术在碲锌镉探测器中的应用[J]. 南华大学学报(自然科学版), 2022, 36(1): 88-96.

[20] 颜俊尧. 基于碲锌镉的阵列探测器关键技术研究[D]. 北京: 华北电力大学(北京), 2018.

[21] LEE M, LEE D, JO B, et al. Feasibility study of contrast enhanced digital mammography based on photon-counting detector by projection-based weighting technique: a simulation study[C]//SPIE Medical Imaging. Proc SPIE 10573, Medical Imaging 2018: Physics of Medical Imaging, Houston, Texas, USA. 2018, 10573: 1262-1272.

[22] MSC A K, ZARETSKY PHD U, MOALEM I, et al. A new cardiac phantom for dynamic SPECT[J]. Journal of Nuclear Cardiology, 2021, 28(5): 2299-2309.

[23] LEE Y. Preliminary evaluation of dual-head Compton camera with Si/CZT material for breast cancer detection: Monte Carlo simulation study[J]. Optik, 2020, 202: 163519.

[24] 陈永仁, 赵 鹏, 俞鹏飞, 等. 室温辐射探测器用碲锌镉晶体的退火改性研究进展[J]. 材料科学与工程学报, 2021, 39(2): 342-354.

[25] CUDDY-WALSH S G, WELLS R G. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera[J]. Medical Physics, 2018, 45(5): 2033-2047.

[26] ITO T, MATSUSAKA Y, ONOGUCHI M, et al. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator[J]. Journal of Applied Clinical Medical Physics, 2021, 22(2): 165-177.

[27] 席守智. Cd(Zn)Te与金属和半导体的界面研究[D]. 西安: 西北工业大学, 2018.

[28] BEN-HAIM S, KENNEDY J, KEIDAR Z. Novel cadmium zinc telluride devices for myocardial perfusion imaging-technological aspects and clinical applications[J]. Seminars in Nuclear Medicine, 2016, 46(4): 273-285.

[29] CHEN Y, CUI Y, O′CONNOR P, et al. Test of a 32-channel prototype ASIC for photon counting application[C]∥IEEE Nuclear Science Symposium Conference Record Nuclear Science Symposium, 2015, 2015: 10.1109/NSSMIC.2015.7582272.

[30] SCHWANK J, BROWN D, GIRARD S, et al. 2012 special NSREC issue of the IEEE transactions on nuclear science comments by the editors[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 2632.

[31] KURKOWSKA S, BIRKENFELD B, PIWOWARSKA-BILSKA H. Physical quantities useful for quality control of quantitative SPECT/CT imaging[J]. Nuclear Medicine Review Central & Eastern Europe, 2021, 24(2): 93-98.

[32] FLEETWOOD D, BROWN D, GIRARD S, et al. 2013 special NSREC issue of the IEEE transactions on nuclear science comments by the editors[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4042.

[33] GLASSER F, VILLARD P, ROSTAING J P, et al. Large dynamic range 64-channel ASIC for CZT or CdTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 509(1/2/3): 183-190.

[34] XU L Y, JIE W Q, ZHA G Q, et al. Radiation damage on CdZnTe: In crystals under high dose 60Co γ-rays[J]. CrystEngComm, 2013, 15(47): 10304-10310.

[35] GAO W. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 745: 57-62.

[36] GAO W, LI X, LIU H, et al. Design and performance of a 16-channel radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager[J]. Microelectronics Journal, 2016, 48: 87-94.

[37] ZANNONI E M. Development of a multi-detector readout circuitry for ultrahigh energy resolution single-photon imaging applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 981: 164531.

[38] JONES L. HEXITEC ASIC-a pixellated readout chip for CZT detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604(1/2): 34-37.

[39] 曾国强, 魏世龙, 夏 源, 等. 碲锌镉探测器的数字核信号处理系统设计[J]. 核技术, 2015, 38(11): 53-60.

[40] 吴 昊, 秦水介. 碲锌镉探测器低噪声读出电路的设计[J]. 电子技术与软件工程, 2017(5): 112-113.

[41] SONG J S, LEE J M, SOHN J Y, et al. Hybrid iterative reconstruction technique for liver CT scans for image noise reduction and image quality improvement: evaluation of the optimal iterative reconstruction strengths[J]. La Radiologia Medica, 2015, 120(3): 259-267.

[42] LENG S, YU L F, WANG J, et al. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy Bin selection[J]. Medical Physics, 2011, 38(9): 4946-4957.

[43] LEE Y H, PARK K K, SONG H T, et al. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software[J]. European Radiology, 2012, 22(6): 1331-1340.

[44] HOKAMP N G, NEUHAUS V, ABDULLAYEV N, et al. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms[J]. Skeletal Radiology, 2018, 47(2): 195-201.

[45] KHAN T M, BAILEY D G, KHAN M A U, et al. Efficient hardware implementation for fingerprint image enhancement using anisotropic Gaussian filter[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2116-2126.

[46] SERIZEL R, MOONEN M, VAN DIJK B, et al. Low-rank approximation based multichannel Wiener filter algorithms for noise reduction with application in cochlear implants[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 785-799.

[47] LIU Y K. Noise reduction by vector Median filtering[J]. GEOPHYSICS, 2013, 78(3): V79-V87.

[48] CHEN Z L, ZENG Z Y, SHEN H L, et al. DN-GAN: denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images[J]. Biomedical Signal Processing and Control, 2020, 55: 101632.

[49] HIGAKI T, NAKAMURA Y, TATSUGAMI F, et al. Improvement of image quality at CT and MRI using deep learning[J]. Japanese Journal of Radiology, 2019, 37(1): 73-80.

[50] AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning-A new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18.

[51] ZUNAIR H. Sharp U-Net: depthwise convolutional network for biomedical image segmentation[J]. Computers in Biology and Medicine, 2021, 136: 104699.

[52] CHEN X C, ZHOU B, XIE H D, et al. Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49(9): 3046-3060.

[53] BUTTACAVOLI A, GERARDI G, PRINCIPATO F, et al. Energy recovery of multiple charge sharing events in room temperature semiconductor pixel detectors[J]. Sensors, 2021, 21(11): 3669.

[54] ABBENE L, GERARDI G, PRINCIPATO F, et al. Dual-polarity pulse processing and analysis for charge-loss correction in cadmium-zinc-telluride pixel detectors[J]. Journal of Synchrotron Radiation, 2018, 25(4): 1078-1092.

[55] COSTANTINO A, BIRD A J, SCHUFFHAM J, et al. A back-projection approach to coded aperture imaging for SPECT applications[C]//SPIE Medical Imaging. Proc SPIE 12031, Medical Imaging 2022: Physics of Medical Imaging, San Diego, California, USA. 2022, 12031: 819-828.

[56] PHD J O, MSC E M, JONAS JGI MD P, et al. Differences in attenuation pattern in myocardial SPECT between CZT and conventional gamma cameras[J]. Journal of Nuclear Cardiology, 2019, 26(6): 1984-1991.

[57] SASAKI M, KOYAMA S, KODERA Y, et al. Identification of breast tissue using the X-ray image measured with an energy-resolved cadmium telluride series detector based on photon-counting technique[C]//Proc SPIE 10718, 2018, 10718: 525-530.

[58] WU D W, ZHANG Z Y, MA R Z, et al. Comparison of CZT SPECT and conventional SPECT for assessment of contractile function, mechanical synchrony and myocardial scar in patients with heart failure[J]. Journal of Nuclear Cardiology, 2019, 26(2): 443-452.

[59] JOHNSON R D, BATH N K, RINKER J, et al. Introduction to the D-SPECT for technologists: workflow using a dedicated digital cardiac camera[J]. Journal of Nuclear Medicine Technology, 2020, 48(4): 297-303.

[60] BEN-HAIM S, MURTHY V L, BREAULT C, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study[J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 2013, 54(6): 873-879.

[61] 张宗耀, 汪 蕾, 张海龙, 等. 利用CZT SPECT进行心脏 99Tcm-MIBI/123I-MIBG双核素显像的可行性研究[J]. 中华核医学与分子影像杂志, 2021, 41(9): 536-539.

[62] 任俊灵, 张宗耀, 方 纬. 利用新型镉锌碲晶体单光子发射断层进行心肌灌注/心脏交感神经同步显像新技术的研究进展[J]. 心肺血管病杂志, 2021, 40(9): 1001-1003.

[63] ARVIDSSON I, OVERGAARD N C, DAVIDSSON A, et al. Detection of left bundle branch block and obstructive coronary artery disease from myocardial perfusion scintigraphy using deep neural networks[C]//SPIE Medical Imaging. Proc SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, Online Only. 2021, 11597: 154-160.

[64] MELKI S, CHAWKI M B, MARIE P Y, et al. Augmented planar bone scintigraphy obtained from a whole-body SPECT recording of less than 20 min with a high-sensitivity 360° CZT camera[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47(5): 1329-1331.

[65] DESMONTS C, BOUTHIBA M A, ENILORAC B, et al. Evaluation of a new multipurpose whole-body CZT-based camera: comparison with a dual-head Anger camera and first clinical images[J]. EJNMMI Physics, 2020, 7(1): 18.

[66] ACHRAF B, ANTOINE V, ALAIN B, et al. Absolute quantification of bone scintigraphy for the longitudinal monitoring of vertebral fractures with a high-speed whole-body CZT-SPECT/CT system[J]. Research Square, 2022.

[67] MAZESS R B, HANSON J A, PAYNE R, et al. Axial and total-body bone densitometry using a narrow-angle fan-beam[J]. Osteoporosis International, 2000, 11(2): 158-166.

[68] YAMANE T, KONDO A, TAKAHASHI M, et al. Ultrafast bone scintigraphy scan for detecting bone metastasis using a CZT whole-body gamma camera[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(8): 1672-1677.

[69] HUH Y, YANG J, DIM O U, et al. Evaluation of a variable-aperture full-ring SPECT system using large-area pixelated CZT modules: a simulation study for brain SPECT applications[J]. Medical Physics, 2021, 48(5): 2301-2314.

[70] BORDONNE M, CHAWKI M B, MARIE P Y, et al. High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera[J]. EJNMMI Physics, 2020, 7(1): 65.

[71] BANI SADR A, TESTART N, TYLSKI P, et al. Reduced scan time in 123I-FP-CIT SPECT imaging using a large-field cadmium-zinc-telluride camera[J]. Clinical Nuclear Medicine, 2019, 44(7): 568-569.

吴忠航, 孙斌, 黄钢, 屈骞, 唐懿文, 孙九爱. 碲锌镉器件技术进展及其在SPECT中的应用[J]. 人工晶体学报, 2023, 52(2): 196. WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT[J]. Journal of Synthetic Crystals, 2023, 52(2): 196.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!