人工晶体学报, 2022, 51 (4): 571, 网络出版: 2022-06-14  

名义纯及掺杂铌酸锂晶体内偏置场的实验研究

Experimental Study on Internal Bias Electric Field of Nominally Undoped and Doped Lithium Niobate Crystals
吴婧 1,2,3李清连 1,2,3张中正 1,2,3杨金凤 4郝永鑫 1,2,3李佳欣 1刘士国 1,2,3张玲 1,2,3孙军 1,2,3
作者单位
1 南开大学物理科学学院, 天津 300071
2 南开大学弱光非线性光子学教育部重点实验室, 天津 300457
3 山西大学极端光学协同创新中心, 太原 030006
4 河南工程学院材料工程学院, 河南省电子陶瓷材料与应用重点实验室, 郑州 451191
摘要
铌酸锂晶体的内偏置场对铁电应用、电光应用和非线性光学应用等均有直接影响。本工作建立了铌酸锂(LN)晶体内偏置场测试方法, 对同成分铌酸锂(CLN)晶体、近化学计量比铌酸锂(nSLN)晶体、掺杂铌酸锂(doped LN)晶体的内偏置场和矫顽场进行测量。结果表明, CLN晶体内偏置场最高(Eint=2.53 kV/mm), nSLN晶体的内偏置场大幅降低, 其中富锂熔体法生长和气相输运平衡(vapor transport equilibration, VTE)法结合得到的nSLN晶体的内偏置场最小, 与CLN晶体相比降低了约两个数量级; 掺杂铌酸锂晶体的内偏置场与CLN晶体相比也普遍降低, 其中掺6.5%(摩尔分数)Mg的CLN晶体的内偏置场约为CLN晶体的四分之一, 掺7%(摩尔分数)Zn的CLN晶体的内偏置场约为CLN晶体的六分之一。最后对组分和掺杂影响内偏置场的因素进行了简要分析。
Abstract
Internal bias electric field in the lithium niobate (LN) crystal has a direct impact to the ferroelectric, electro-optic, and nonlinear effects of the crystal and the associated applications. A method to measure this field was proposed, and such a measurement in congruent lithium niobate (CLN) crystals, near-stoichiometric lithium niobate (nSLN) crystals, and doped LN crystals was performed. The results show that the internal bias electric field in the CLN crystal (reaching 2.53 kV/mm) is the largest among the three cases. Compared with the CLN crystal, this field greatly reduces in the nSLN crystals, and can be even lower by two orders of magnitudes for those grown by the lithium-rich melts method followed by vapor transport equilibration (VTE) treatment. In the doped LN crystals, the internal bias electric fields for the cases of 6.5% (mole fraction) Mg and 7% (mole fraction) Zn doping are 4 and 6 times smaller than that in the CLN crystal, respectively. The reason for causing the difference in the two doped cases was briefly discussed.
参考文献

[1] 高博锋,任梦昕,郑大怀,等.铌酸锂的耄耋之路: 历史与若干进展[J].人工晶体学报,2021,50(7): 1183-1199.

[2] WANG K, GAO M, YU S, et al. A compact and high efficiency intracavity OPO based on periodically poled lithium niobate[J]. Scientific Reports, 2021, 11: 5079.

[3] ZHANG M F, GUO H X, ZHANG H L, et al. A study on the disk-type piezoelectric transformer of Mg∶Ln single crystal[J]. Advanced Materials Research, 2010, 105/106: 278-281.

[4] 郑大怀,吴 婧,商继芳,等.电光调Q晶体研究进展[J].中国科学: 技术科学,2017,47(11): 1139-1148.

[5] 窦飞飞,杨金凤,刘小伟,等.中红外光参量振荡器用周期极化晶体的研究进展[J].硅酸盐通报,2011,30(3): 608-614.

[6] KIM S, GOPALAN V, GRUVERMAN A. Coercive fields in ferroelectrics: a case study in lithium niobate and lithium tantalate[J]. Applied Physics Letters, 2002, 80(15): 2740-2742.

[7] GOPALAN V, GUPTA M C. Observation of internal field in LiTaO3 single crystals: its origin and time-temperature dependence[J]. Applied Physics Letters, 1996, 68(7): 888-890.

[8] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74.

[9] CHEN F S, LAMACCHIA J T, FRASER D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 1968, 13(7): 223-225.

[10] GOPALAN V, GUPTA M C. Origin and characteristics of internal fields in LiNbO3 crystals[J]. Ferroelectrics, 1997, 198(1): 49-59.

[11] GOPALAN V, MITCHELL T E, FURUKAWA Y, et al. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals[J]. Applied Physics Letters, 1998, 72(16): 1981-1983.

[12] KURIMURA S, SHOJI I, TAIRA T, et al. Coercive field dependence on Mg concentration in MgO∶LiNbO3[C]//Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170). May 11, 2001. Baltimore, MD, USA. IEEE, 2001.

[13] CHEN Y L, YAN W G, GUO J, et al. Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3[J]. Applied Physics Letters, 2005, 87(21): 212904.

[14] 孔勇发,刘士国,刘宏德,等.四价掺杂铌酸锂晶体[J].红外与毫米波学报,2009,28(3): 181-183+187.

[15] 袁 烨.铌酸锂、钽酸锂超晶格: 制备技术优化及其应用研究[D].南京: 南京大学,2012.

[16] 杨金凤,黄存新,孙 军,等.铌酸锂晶体锂含量的精确测量研究[J].人工晶体学报,2014,43(4): 738-742.

[17] LERNER P, LEGRAS C, DUMAS J P. Stoichiometry of single-crystal of lithium metaniobate[J]. Journal of Crystal Growth, 1968, 3: 231-235.

[18] IYI N, KITAMURA K, IZUMI F, et al. Comparative study of defect structures in lithium niobate with different compositions[J]. Journal of Solid State Chemistry, 1992, 101(2): 340-352.

[19] YAN W B, KONG Y F, SHI L H, et al. The relationship between the switching field and the intrinsic defects in near-stoichiometric lithium niobate crystals[J]. Journal of Physics D: Applied Physics, 2006, 39(1): 21-24.

[20] VOLK T, MAXIMOV B, CHERNAYA T, et al. Photorefractive properties of LiNbO3∶Zn crystals related to the defect structure[J]. Applied Physics B, 2001, 72(6): 647-652.

[21] 邓家春,温金珂,王华馥.掺锌铌酸锂(LiNbO3∶Zn)晶体的物性测量[J].南开大学学报(自然科学版),1994,27(2): 47-51.

[22] 付 博,张国权,刘祥明,等.掺杂对铌酸锂晶体非挥发全息存储性能的影响[J].物理学报,2008,57(5): 2946-2951.

[23] GRABMAIER B C, WERSING W, KOESTLER W. Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure[J]. Journal of Crystal Growth, 1991, 110(3): 339-347.

[24] IYI N, KITAMURA K, YAJIMA Y, et al. Defect structure model of MgO-doped LiNbO3[J]. Journal of Solid State Chemistry, 1995, 118(1): 148-152.

[25] LIU J J, ZHANG W L, ZHANG G Y. Defect chemistry analysis of the defect structure in Mg-doped LiNbO3 crystals[J]. Physica Status Solidi (a), 1996, 156(2): 285-291.

[26] 孔勇发,李 兵,陈云琳,等.掺镁铌酸锂晶体抗光折变微观机理研究[J].红外与毫米波学报,2003,22(1): 40-44.

吴婧, 李清连, 张中正, 杨金凤, 郝永鑫, 李佳欣, 刘士国, 张玲, 孙军. 名义纯及掺杂铌酸锂晶体内偏置场的实验研究[J]. 人工晶体学报, 2022, 51(4): 571. WU Jing, LI Qinglian, ZHANG Zhongzheng, YANG Jinfeng, HAO Yongxin, LI Jiaxin, LIU Shiguo, ZHANG Ling, SUN Jun. Experimental Study on Internal Bias Electric Field of Nominally Undoped and Doped Lithium Niobate Crystals[J]. Journal of Synthetic Crystals, 2022, 51(4): 571.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!