秦娟 1梁丹丹 2孙军 1,3,*杨金凤 4[ ... ]许京军 1,3
作者单位
摘要
1 1.南开大学 物理科学学院, 天津300071
2 2.中国人民解放军陆军工程大学 基础部, 南京 211101
3 3.南开大学 教育部弱光非线性光子学重点实验室, 天津300071
4 4.河南工程大学 河南省电子陶瓷材料及应用重点实验室, 郑州 451191
5 5.南开大学 泰达应用物理学院, 天津 300071
提拉法生长的晶体肩部形状普遍为斜肩, 但斜肩的肩部质量差且加工难度大, 会降低晶体的利用率, 生长平肩晶体可以解决该问题。然而, 平肩晶体对热场和扩肩工艺要求非常高, 扩肩阶段易出现多晶和包裹体缺陷。铌酸锂晶体作为一种多功能晶体材料, 在电子技术、光通信技术、激光技术及集成光子学技术等领域得到了广泛应用。本研究以同成分铌酸锂晶体为例, 利用数值模拟和实验方法, 研究了提拉法生长平肩晶体的热场和扩肩工艺。结果表明:提拉法生长平肩晶体时, 放肩阶段结晶前沿的界面形状需保持微凸;反射屏降低(10 mm)可减小结晶前沿的温度梯度, 避免肩部生成多晶;扩肩速度以监控为主, 微调加热功率保证扩肩趋势, 适当增大扩肩初期(ϕ≤30 mm)的速度, 降低中后期(ϕ≥35 mm)的扩肩速度, 可达到不产生包裹体和缩短放肩周期的目的;采用小幅度(Δt=10 min)微调拉速(Δv=0.2 mm/h)和功率的策略, 可实现拉速(0~1.5 mm/h)的快速变化(1.5~2 h)而不影响晶体扩肩趋势和质量。使用优化后的热场和扩肩工艺, 获得了系列三英寸平肩同成分铌酸锂晶体, 晶体光学均匀性良好。
铌酸锂 热场设计 平肩晶体 提拉法 晶体生长 lithium niobate crystal thermal field design flat shoulder crystal Czochralski method crystal growth 
无机材料学报
2023, 38(8): 978
作者单位
摘要
1 南开大学物理科学学院&泰达应用物理研究院,弱光非线性光子学教育部重点实验室,天津 300457
2 江苏科技大学理学院,江苏 镇江 212100
铌酸锂晶体是一种多功能、多用途的人工晶体材料,具有温度稳定性好、易于光学冷加工、性能易调控等优势。作为典型的光折变晶体,铌酸锂被广泛应用于高密度光存储、激光物理、信息处理和计算等研究与应用领域。伴随海量存储及动态全息三维显示的巨大需求与快速发展,基于铌酸锂晶体的三维光存储及动态显示再次成为研究热点。针对上述研究与应用,综述了铌酸锂晶体光折变全息存储及显示的原理、研究历史和最新进展,并对未来可能的发展方向进行了展望。
材料 铌酸锂晶体 光折变效应 全息存储 全息显示 
中国激光
2023, 50(18): 1813001
韩文斌 1孙德辉 1,3,*王蒙 1李陈哲 1[ ... ]刘宏 1,2,**
作者单位
摘要
1 济南大学前沿交叉科学研究院,山东 济南 250022
2 山东大学晶体材料国家重点实验室,山东 济南 250100
3 山东恒元半导体科技有限公司,山东 济南 271100
高能强场太赫兹(THz)源在国土安全、通信雷达、生物医疗等领域有重要的应用价值。然而,一直以来THz源的辐射输出能量小、转化效率低,阻碍了强场THz前沿科学与应用研究的发展。基于铌酸锂倾斜波前技术,飞秒激光抽运铌酸锂晶体有望实现能量更高的极端强场THz输出。从材料角度阐述了铌酸锂强场THz源产出的研究进展,总结了强场THz源对铌酸锂晶体的性能要求:均匀掺镁铌酸锂、低浓度掺镁近化学计量比铌酸锂、大口径铌酸锂晶体。最后,介绍了近年来周期极化铌酸锂和铌酸锂单晶薄膜等微纳结构的调控在THz源领域的应用研究。
非线性光学 太赫兹波 铌酸锂晶体 强场太赫兹辐射 均匀掺镁 化学计量比 大口径 
中国激光
2023, 50(17): 1714003
作者单位
摘要
1 昆明理工大学 信息工程与自动化学院,云南 昆明 650500
2 云南省计算机应用技术重点实验室,云南 昆明 650500
铌酸锂晶体光学电场传感器为全介质结构,具有宽带宽、对被测电场干扰小的优点,但其灵敏度较低。因此,分析了晶体几何尺寸对传感器灵敏度的影响机理,得出通过增加沿外加电场方向的晶体尺寸同时减少晶体横截面上沿外加电场垂直方向的晶体尺寸来提高传感器的灵敏度。使用COMSOL仿真分析了铌酸锂晶体不同厚度、宽度、长度对晶体内部电场强度的影响,得出晶体厚度从15 mm减小到3 mm和宽度从3 mm增加到22 mm时,晶体内部电场强度分别提高约5.1倍和12.3倍;晶体长度从15 mm变化到55 mm时,晶体内部的电场强度变化仅约为5%。设计并研制出晶体尺寸分别为3 mm×3 mm×42.2 mm (x×y×z),3 mm×6 mm×42.2 mm (x×y×z),6 mm×6 mm×42.2 mm(x×y×z)的三只铌酸锂晶体电场传感器,并搭建工频电场测试平台,测试得出三只电场传感器的灵敏度分别为0.243 mV/(kV·m−1)、0.758 mV/(kV·m−1)、0.150 mV/(kV·m−1)。当晶体厚度和长度一定且晶体宽度从3 mm增加到6 mm时,传感器灵敏度提高3倍。当晶体宽度和长度一定且晶体厚度从6 mm减小到3 mm时,传感器灵敏度提高5倍。结合仿真与实验结果得出:在晶体长度一定时,可以通过设计使用宽度更宽、厚度更薄的晶体,研制出高灵敏度的电场传感器。
光学工程 电场传感器 晶体结构 铌酸锂晶体 灵敏度 optical engineering electric field sensor crystal structure lithium niobate crystal sensitivity 
红外与激光工程
2023, 52(2): 20220370
作者单位
摘要
1 中国电子科技集团公司 第二十六研究所, 重庆 400060
2 中国电子科技集团公司 第十一研究所, 北京 100015
该文介绍了一种损伤阈值较高的2.7 μm声光调Q器件, 比较分析了几种常用的近红外声光材料, 优选铌酸锂晶体做调Q器件的声光介质材料, 它能较好地兼顾衍射效率、光学性能及抗激光损伤能力。该文还分析了激光腔Q值与衍射效率的关系, 通过优化衍射效率的分布, 达到降低驱动功率、提高关断能力的目的。用铌酸锂晶体制作的2.7 μm声光调Q器件, 其工作波长为2.7~2.8 μm, 工作频率为40.68 MHz, 光孔径为3 mm, 通光孔中心部位衍射效率可达75%。与氧化碲制作的声光调Q器件相比, 铌酸锂晶体制作的2.7 μm声光调Q器件的抗激光损伤能力较高。
2.7 μm激光 声光Q开关 铌酸锂晶体 衍射效率 氧化碲 2.7 μm laser acousto-optic Q-switch lithium niobate crystal diffraction efficiency tellurium oxide 
压电与声光
2022, 44(6): 865
作者单位
摘要
1 中国科学院福建物质结构研究所, 福州 350002
2 中国科学院大学, 北京 100049
3 中国福建光电信息科学与技术创新实验室(闽都创新实验室), 福州 350108
4 光电信息控制和安全技术重点实验室, 天津 300308
将铌酸锂(LiNbO3, LN)晶体制作成波导型结构能够进一步提高器件的集成度, 已经广泛应用于电光调制器、频率变换、声光调Q等光电器件中, 在光纤通信、光电传感、激光雷达、航天航空等领域具有重要的应用前景。传统的Ti扩散法制作的LN波导在短波应用中抗光折变损伤能力差, 退火质子交换法制作的LN波导只能支持TM模(横磁模)单偏振传输, 应用领域受限。本文提出了一种新型Zn扩散法制作掺镁LN脊形波导的方法, 通过建立波导的扩散模型和仿真, 探索制备的工艺条件并进行测试, 得到的LN波导最低传输损耗为0.86 dB/cm, 光折变损伤阈值可达到184 kW/cm2, 这将为高功率铌酸锂波导集成光电器件的研发提供一种较好的制备途径。
掺镁铌酸锂晶体 光波导 波导器件 Zn扩散 高功率密度 传输损耗 Mg doped lithium niobate crystal optical waveguide waveguide device Zn diffusion high power density transmission loss 
人工晶体学报
2022, 51(11): 1823
作者单位
摘要
南开大学物理科学学院&泰达应用物理研究院, 弱光非线性光子学教育部重点实验室, 天津 300457
铌酸锂(LiNbO3, LN)是一种多功能多用途的人工晶体, 被称为“光学硅”。近期以铌酸锂薄膜(LNOI)为平台的集成光子学发展迅速, 有将“光学硅”变为现实的趋势。高集成意味着高局域高光强密度, 使铌酸锂晶体的光折变效应变得不容忽视。光折变效应是光致折射率变化的简称, 是非线性光学的重要组成部分。本文回顾了铌酸锂晶体光折变效应的发现和机理、不同掺杂及掺杂组合对光折变效应的调控, 重点介绍了铋镁双掺铌酸锂晶体的光折变性能及相关理论和实验结果, 概述了铌酸锂光折变波导和孤子, 及基于LNOI的集成光子学器件中的光折变效应, 并对未来的研究趋势进行了展望。期待我国发挥铌酸锂光折变研究及LNOI产业化的优势, 在光子学芯片的竞争中占据主导地位。
铌酸锂晶体 光折变效应 机制 掺杂 全息存储及显示 集成光子学 lithium niobate crystal photorefractive effect mechanism doping holographic storage and display integrated photonics 
人工晶体学报
2022, 51(9-10): 1626
吴婧 1,2,3李清连 1,2,3张中正 1,2,3杨金凤 4[ ... ]孙军 1,2,3
作者单位
摘要
1 南开大学物理科学学院, 天津 300071
2 南开大学弱光非线性光子学教育部重点实验室, 天津 300457
3 山西大学极端光学协同创新中心, 太原 030006
4 河南工程学院材料工程学院, 河南省电子陶瓷材料与应用重点实验室, 郑州 451191
铌酸锂晶体的内偏置场对铁电应用、电光应用和非线性光学应用等均有直接影响。本工作建立了铌酸锂(LN)晶体内偏置场测试方法, 对同成分铌酸锂(CLN)晶体、近化学计量比铌酸锂(nSLN)晶体、掺杂铌酸锂(doped LN)晶体的内偏置场和矫顽场进行测量。结果表明, CLN晶体内偏置场最高(Eint=2.53 kV/mm), nSLN晶体的内偏置场大幅降低, 其中富锂熔体法生长和气相输运平衡(vapor transport equilibration, VTE)法结合得到的nSLN晶体的内偏置场最小, 与CLN晶体相比降低了约两个数量级; 掺杂铌酸锂晶体的内偏置场与CLN晶体相比也普遍降低, 其中掺6.5%(摩尔分数)Mg的CLN晶体的内偏置场约为CLN晶体的四分之一, 掺7%(摩尔分数)Zn的CLN晶体的内偏置场约为CLN晶体的六分之一。最后对组分和掺杂影响内偏置场的因素进行了简要分析。
铌酸锂晶体 内偏置场 名义纯 掺杂 本征缺陷 阈值浓度 lithium niobate crystal internal bias electric field nominally undoping doping intrinsic defect threshold concentration 
人工晶体学报
2022, 51(4): 571
吴婧 1,2,4李清连 1,3,4张中正 1,2,4孙军 1,2,4,*[ ... ]许京军 1,2,4
作者单位
摘要
1 南开大学弱光非线性光子学教育部重点实验室,天津 300457
2 南开大学物理科学学院,天津 300071
3 南开大学泰达应用物理研究院,天津 300457
4 山西大学极端光学协同创新中心,山西 太原 030006
5 中国工程物理研究院上海激光等离子体研究所,上海 201800
分析了电光削波器半波电压的关键影响因素,发现使用具有较大有效电光系数的电光晶体、合理设计晶体的横纵比是降低器件半波电压的有效手段;在此基础上,设计并制备出低半波电压的铌酸锂电光削波器。采用沿铌酸锂晶体x轴通光、z轴加电的横向电光工作模式,并利用双晶匹配的方式消除自然双折射的影响。匹配后两块晶体通光面的光学质量良好,直流高压下测得的半波电压约为900 V,动态消光比达200∶1。使用幅值为800 V、脉宽为0.95 ns、重复频率为1 Hz的脉冲高压驱动电光削波器工作时,从1064 nm连续激光中获得了脉宽为1.46 ns、重复频率为1 Hz的激光脉冲输出。
非线性光学 铌酸锂晶体 电光效应 双晶匹配 削波器 
中国激光
2022, 49(7): 0708001
作者单位
摘要
1 山东大学晶体材料研究所晶体材料国家重点实验室, 山东 济南 250100
2 中电科技德清华莹电子有限公司, 浙江 湖州 313000

非线性光子晶体(nonlinear photonic crystal, NPC)具有空间相关的二阶非线性系数,可以通过准相位匹配(quasi-phase matching, QPM)有效地控制非线性光学相互作用。一维和二维NPC已被广泛用于激光频率转换、空间光调制和非线性光学成像中。然而,受传统极化方法的限制,三维(3D)NPC的实现仍然是非线性光学领域的最大挑战之一。从准相位匹配的基本理论出发,综述了目前利用飞秒激光选择性地擦除铌酸锂(LiNbO3, LN)晶体非线性系数的3D LN NPC实验进展、在铁电钛酸钡钙(Ba0.77Ca0.23TiO3, BCT)晶体的自发畴结构中实现3D调制的QPM以及使用激光直写技术在BCT晶体中制造3D NPC的进展。另外,还介绍了一种具有自发的魔方立方状畴结构的天然钽铌酸钾(KTa0.56Nb0.44O3, KTN)钙钛矿NPC,无需外部极化即可直接满足3D QPM条件。3D NPC晶体可以广泛应用于需要产生和控制新频率光的领域,实现非线性光束整形、非线性成像和三维非线性全息等应用。

非线性光学 三维准相位匹配 铌酸锂晶体 钛酸钡钙晶体 钽铌酸钾晶体 
中国激光
2021, 48(12): 1208001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!