人工晶体学报, 2022, 51 (2): 333, 网络出版: 2022-03-24   

半导体碳化硅湿法腐蚀工艺研究

Research Progress on Wet Etching of Semiconductor SiC
作者单位
1 浙江大学硅材料国家重点实验室材料科学与工程学院,杭州 310027
2 浙江大学杭州国际科创中心,杭州 311200
摘要
碳化硅(SiC)具有禁带宽度大、电子饱和漂移速度高、击穿场强高、热导率高、化学稳定性好等优异特性,是制备高性能功率器件等半导体器件的理想材料。得益于工艺简单、操作便捷、设备要求低等优点,湿法腐蚀已作为晶体缺陷分析、表面改性的常规工艺手段,应用到了SiC晶体生长和加工中的质量检测以及SiC器件制造。根据腐蚀机制不同,湿法腐蚀可以分为电化学腐蚀和化学腐蚀。本文综述了不同湿法腐蚀工艺的腐蚀机理、腐蚀装置和应用领域,并展望了SiC湿法腐蚀工艺的发展前景。
Abstract
Silicon carbide (SiC) possesses excellent properties of wide band gap, high electron saturation velocity, high breakdown field strength, high thermal conductivity and good chemical stability, etc. SiC is an ideal raw material for high-performance power device and other semiconductor devices. With the advantages of simple processing, convenient operation and low-cost equipment requirements, wet etching has been adopted in the materials characterization and device of SiC. Defect analysis and surface modification can all greatly benefit from wet etching. According to the underlying mechanisms, wet etching can be classified into electrochemical etching and chemical etching. In this review, the mechanisms, equipments and applications of both electrochemical etching and chemical etching have been introduced.
参考文献

[1] 杨祥龙,杨 昆,陈秀芳,等.高质量N型SiC单晶生长及其器件应用[J].人工晶体学报,2015,44(6):1427-1431.

[2] SHE X, HUANG A Q, LUCA , et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.

[3] ZHOU Y, PAN G S, ZOU C L, et al. Chemical mechanical polishing (CMP) of SiC wafer using photo-catalyst incorporated pad[J]. ECS Journal of Solid State Science and Technology, 2017, 6(9): P603-P608.

[4] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422.

[5] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103.

[6] WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Progress in Materials Science, 2015, 72: 1-60.

[7] STEINER J, RODER M, NGUYEN B D, et al. Analysis of the basal plane dislocation density and thermomechanical stress during 100 mm PVT growth of 4H-SiC[J]. Materials, 2019, 12(13): 2207.

[8] SUN W, SONG Y T, LIU C J, et al. Basal plane dislocation-threading edge dislocation complex dislocations in 6H-SiC single crystals[J]. Materials Express, 2015, 5(1): 63-67.

[9] 彭 燕,陈秀芳,彭 娟,等.高质量半绝缘150 mm 4H-SiC单晶生长研究[J].人工晶体学报,2016,45(5):1145-1152.

[10] HARRIS J M, GATOS H C, WITT A F. Identification of the (0001) and the (0001) surfaces of silicon carbide[J]. Journal of the Electrochemical Society, 1969, 116(5): 672.

[11] CHRISTIANSEN K, HELBIG R. Anisotropic oxidation of 6H-SiC[J]. Journal of Applied Physics, 1996, 79(6): 3276-3281.

[12] KAYAMBAKI M, TSAGARAKI K, CIMALLA V, et al. Crystal quality evaluation by electrochemical preferential etching of p-type SiC crystals[J]. Journal of the Electrochemical Society, 2000, 147(7): 2744.

[13] CHANG W H. Micromachining of p-type 6H-SiC by electrochemical etching[J]. Sensors and Actuators A: Physical, 2004, 112(1): 36-43.

[14] ZHANG Y, LI R L, ZHANG Y J, et al. Indiscriminate revelation of dislocations in single crystal SiC by inductively coupled plasma etching[J]. Journal of the European Ceramic Society, 2019, 39(9): 2831-2838.

[15] KAWADA Y, TAWARA T, NAKAMURA S I, et al. Anisotropic transformation of 4H-SiC etching shapes by high-temperature annealing and its enhancement by ion implantation[J]. Japanese Journal of Applied Physics, 2010, 49(4): 040203.

[16] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.

[17] 章安辉,李 劼.碳化硅单晶微管道缺陷测试研究[J].科技信息,2011(15):68-69+185.

[18] CORRA S A, RADTKE C, SOARES G V, et al. Presence and resistance to wet etching of silicon oxycarbides at the SiO2/SiC interface[J]. Electrochemical and Solid-State Letters, 2008, 11(9): H258.

[19] IMAMURA K, AKAI T, KOBAYASHI H. Planarization mechanism for 6H-SiC (0001) Si-faced surfaces using electrochemical reactions[J]. Materials Research Express, 2019, 6(5): 055906.

[20] VAN DORP D H, WEYHER J L, KELLY J J. Anodic etching of SiC in alkaline solutions[J]. Journal of Micromechanics and Microengineering, 2007, 17(4): S50-S55.

[21] SHOR J S, KURTZ A D, GRIMBERG I, et al. Dopant-selective etch stops in 6H and 3C SiC[J]. Journal of Applied Physics, 1997, 81(3): 1546-1551.

[22] MORISAKI H, ONO H, YAZAWA K. Photoelectrochemical properties of single-crystalline n-SiC in aqueous electrolytes[J]. Journal of the Electrochemical Society, 1984, 131(9): 2081-2086.

[23] GERISCHER H. Electrolytic decomposition and photodecomposition of compound semiconductors in contact with electrolytes[J]. Journal of Vacuum Science and Technology, 1978, 15(4): 1422-1428.

[24] SHOR J S, OSGOOD R M, KURTZ A D. Photoelectrochemical conductivity selective etch stops for SiC[J]. Applied Physics Letters, 1992, 60(8): 1001-1003.

[25] VERHAVERBEKE S, TEERLINCK I, VINCKIER C, et al. The etching mechanisms of SiO2 in hydrofluoric acid[J]. Journal of the Electrochemical Society, 1994, 141(10): 2852-2857.

[26] RYSY S, SADOWSKI H, HELBIG R. Electrochemical etching of silicon carbide[J]. Journal of Solid State Electrochemistry, 1999, 3(7/8): 437-445.

[27] VAN DORP D H, SATTLER J J H B, DEN OTTER J H, et al. Electrochemistry of anodic etching of 4H and 6H-SiC in fluoride solution of pH 3[J]. Electrochimica Acta, 2009, 54(26): 6269-6275.

[28] VAN DE LAGEMAAT J, VANMAEKELBERGH D, KELLY J J. Photoelectrochemical characterization of 6H-SiC[J]. Journal of Applied Physics, 1998, 83(11): 6089-6095.

[29] CAO A T, LUONG Q N T, DAO C T. Influence of the anodic etching current density on the morphology of the porous SiC layer[J]. AIP Advances, 2014, 4(3): 037105.

[30] SUGITA T, HIRAMATSU K, IKEDA S, et al. Fabrication of pores in a silicon carbide wafer by electrochemical etching with a glassy-carbon needle electrode[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2580-2584.

[31] YANG X, SUN R Y, OHKUBO Y, et al. Investigation of anodic oxidation mechanism of 4H-SiC (0001) for electrochemical mechanical polishing[J]. Electrochimica Acta, 2018, 271: 666-676.

[32] CHEN Z J, ZHAO Y H. Investigation into electrochemical oxidation behavior of 4H-SiC with varying anodizing conditions[J]. Electrochemistry Communications, 2019, 109: 106608.

[33] YANG X Z, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC (0001) surface[J]. Electrochemistry Communications, 2019, 100: 1-5.

[34] SHISHKIN Y, KE Y, DEVATY R P, et al. Fabrication and morphology of porous p-type SiC[J]. Journal of Applied Physics, 2005, 97(4): 044908.

[35] WANG S, HUANG Q, GUO R, et al. Study on the layering phenomenon of SiC porous layer fabricated by constant current electrochemical etching[J]. Nanotechnology, 2020, 31(20): 205702.

[36] LIU Y, LIN W, LIN Z Y, et al. A combined etching process toward robust superhydrophobic SiC surfaces[J]. Nanotechnology, 2012, 23(25): 255703.

[37] SHISHKIN Y, CHOYKE W J, DEVATY R P. Photoelectrochemical etching of n-type 4H silicon carbide[J]. Journal of Applied Physics, 2004, 96(4): 2311-2322.

[38] BOZACK M J, CHOYKE W J, MUEHLHOFF L, et al. Reaction chemistry at the Si (100) surface: control through active-site manipulation[J]. Journal of Applied Physics, 1986, 60(10): 3750-3754.

[39] GAUTIER G, CAYREL F, CAPELLE M, et al. Room light anodic etching of highly doped n-type 4H-SiC in high-concentration HF electrolytes: difference between C and Si crystalline faces[J]. Nanoscale Research Letters, 2012, 7(1): 1-6.

[40] KE Y, YAN F, DEVATY R P, et al. Surface polishing by electrochemical etching of p-type 4H SiC[J]. Journal of Applied Physics, 2009, 106(6): 064901.

[41] SHOR J S, GRIMBERG I, WEISS B Z, et al. Direct observation of porous SiC formed by anodization in HF[J]. Applied Physics Letters, 1993, 62(22): 2836-2838.

[42] YANG X, SUN R Y, KAWAI K, et al. Surface modification and microstructuring of 4H-SiC(0001) by anodic oxidation with sodium chloride aqueous solution[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2535-2542.

[43] IMONKA V, HSSINGER A, WEINBUB J, et al. Growth rates of dry thermal oxidation of 4H-silicon carbide[J]. Journal of Applied Physics, 2016, 120(13): 135705.

[44] GOTO D, HIJIKATA Y, YAGI S, et al. Differences in SiC thermal oxidation process between crystalline surface orientations observed by in situ spectroscopic ellipsometry[J]. Journal of Applied Physics, 2015, 117(9): 095306.

[45] SHOR J S, KURTZ A D. Photoelectrochemical etching of 6H-SiC[J]. Journal of the Electrochemical Society, 1994, 141(3): 778-781.

[46] SCHNABEL C, WRNER M, GONZLEZ B, et al. Photoelectrochemical characterization of p- and n-doped single crystalline silicon carbide and photoinduced reductive dehalogenation of organic pollutants at p-doped silicon carbide[J]. Electrochimica Acta, 2001, 47(5): 719-727.

[47] 路家斌,熊 强,阎秋生,等.紫外光催化辅助SiC抛光过程中化学反应速率的影响[J].表面技术,2019,48(11):148-158.

[48] SHOR J S, ZHANG X G, OSGOOD R M. Laser-assisted photoelectrochemical etching of n-type beta - SiC[J]. Journal of the Electrochemical Society, 1992, 139(4): 1213-1216.

[49] SHOR J S, OSGOOD R M. Broad-area photoelectrochemical etching of n-type beta - SiC[J]. Journal of the Electrochemical Society, 1993, 140(8): L123-L125.

[50] VAN DORP D H, KELLY J J. Photoelectrochemistry of 4H-SiC in KOH solutions[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 260-266.

[51] KATO M, ICHIMURA M, ARAI E, et al. Electrochemical etching of 6H-SiC using aqueous KOH solutions with low surface roughness[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 7A): 4233-4236.

[52] PAL P, KUMAR S, SINGH S K. Study of eutectic etching process for defects analysis in n type 4H SiC[J]. Defence Science Journal, 2020, 70(5): 515-519.

[53] SCHMITT E, STRAUBINGER T, RASP M, et al. Polytype stability and defects in differently doped bulk SiC[J]. Journal of Crystal Growth, 2008, 310(5): 966-970.

[54] ZHANG Z, STAHLBUSH R E, PIROUZ P, et al. Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer[J]. Journal of Electronic Materials, 2007, 36(5): 539-542.

[55] AMELINCKX S, STRUMANE G, WEBB W W. Dislocations in silicon carbide[J]. Journal of Applied Physics, 1960, 31(8): 1359-1370.

[56] GABOR T, STICKLER R. Chemical etching studies and transmission electron microscopy of silicon carbide[J]. Nature, 1963, 199(4898): 1054-1056.

[57] BARTLETT R W, BARLOW M. Surface polarity and etching of beta-silicon carbide[J]. Journal of the Electrochemical Society, 1970, 117(11): 1436.

[58] BRANDER R W, BOUGHEY A L. The etching of -silicon carbide[J]. British Journal of Applied Physics, 1967, 18(7): 905-1032.

[59] MAHAJAN S, ROKADE M V, ALI S T, et al. Investigation of micropipe and defects in molten KOH etching of 6H n-silicon carbide (SiC) single crystal[J]. Materials Letters, 2013, 101: 72-75.

[60] YANG X L, YU J Y, CHEN X F, et al. Basal plane bending of 4H-SiC single crystals grown by sublimation method with different seed attachment methods[J]. CrystEngComm, 2018, 20(43): 6957-6962.

[61] BARTLETT R W, MARTIN G W. Imperfections in solution-grown β-silicon carbide crystals[J]. Journal of Applied Physics, 1968, 39(5): 2324-2329.

[62] ZHANG Y, CHEN H, LIU D Z, et al. High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching[J]. Applied Surface Science, 2020, 525: 146532.

[63] CUI Y X, HU X B, XIE X J, et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method[J]. CrystEngComm, 2018, 20(7): 978-982.

[64] TOKURA N, HARA K, TAKEUCHI Y, et al. Anisotropy in thermal oxidation of 6H-SiC[M]//NAKASHIMA S, MATSUNAMI H, YOSHIDA S, et al. Silicon Carbide and Related Materials 1995. 1996: 637-640.

[65] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 8): 4661-4665.

[66] MOKHOV E N, KAZAROVA O P, SOLTAMOV V A, et al. Influence of neutron irradiation on etching of SiC in KOH[J]. Technical Physics, 2017, 62(7): 1119-1121.

[67] FUKUNAGA K, JUN S D, KIMOTO T. Anisotropic etching of single crystalline SiC using molten KOH for SiC bulk micromachining[C]//MOEMS-MEMS 2006 Micro and Nanofabrication. Proc SPIE 6109, Micromachining and Microfabrication Process Technology XI, San Jose, California, USA. 2006, 6109: 125-132.

[68] SYVAJARVI M, YAKIMOVA R, JANZEN E. Anisotropic etching of SiC[J]. Journal of the Electrochemical Society, 2000, 147(9): 3519-3522.

[69] SAKWE S A, JANG Y S, WELLMANN P J. Defect etching of non-polar and semi-polar faces in SiC[M]//Materials Science Forum. Stafa: Trans Tech Publications Ltd., 2007: 243-246.

[70] SYVJRVI M, YAKIMOVA R, JANZéN E. Interfacial properties in liquid phase growth of SiC[J]. Journal of the Electrochemical Society, 1999, 146(4): 1565-1569.

[71] SAKWE S A, MüLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526.

[72] WEYHER J L, LAZAR S, BORYSIUK J, et al. Defect-selective etching of SiC[J]. Physica Status Solidi (a), 2005, 202(4): 578-583.

[73] WU P, YOGANATHAN M, ZWIEBACK I. Defect evolution during growth of SiC crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1804-1809.

[74] KATSUNO M, OHTANI N, AIGO T, et al. Structural properties of subgrain boundaries in bulk SiC crystals[J]. Journal of Crystal Growth, 2000, 216(1/2/3/4): 256-262.

[75] SICHE D, KLIMM D, HLZEL T, et al. Reproducible defect etching of SiC single crystals[J]. Journal of Crystal Growth, 2004, 270(1/2): 1-6.

[76] 杨 莺,陈治明.湿法腐蚀工艺研究碳化硅晶体缺陷表面形貌[J].人工晶体学报,2008,37(3):634-638.

[77] WU P, YOGANATHAN M, ZWIEBACK I, et al. Characterization of dislocations and micropipes in 4H n+ SiC substrates[J]. Materials Science Forum, 2008, 600/601/602/603: 333-336.

[78] DONG L, ZHENG L, LIU X F, et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method[J]. Materials Science Forum, 2013, 740/741/742: 243-246.

[79] KALLINGER B, POLSTER S, BERWIAN P, et al. Threading dislocations in n- and p-type 4H-SiC material analyzed by etching and synchrotron X-ray topography[J]. Journal of Crystal Growth, 2011, 314(1): 21-29.

[80] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates[J]. Japanese Journal of Applied Physics, 2011, 50(7R): 075502.

[81] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Correlation between etch pits formed by molten KOH+Na2O2 etching and dislocation types in heavily doped n+-4H-SiC studied by X-ray topography[J]. Journal of Crystal Growth, 2013, 364: 7-10.

[82] WAN J W, PARK S H, CHUNG G, et al. A comparative study of micropipe decoration and counting in conductive and semi-insulating silicon carbide wafers[J]. Journal of Electronic Materials, 2005, 34(10): 1342-1348.

[83] YAO Y Z, ISHIKAWA Y, SATO K, et al. Dislocation revelation from (000(1)over-bar) carbon-face of 4H-SiC by using vaporized KOH at high temperature[J]. Applied Physics Express, 2012, 5(7): 075601.

[84] WU P. Etching study of dislocations in heavily nitrogen doped SiC crystals[J]. Journal of Crystal Growth, 2010, 312(8): 1193-1198.

[85] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001.

[86] TAKAHASHI J, KANAYA M, FUJIWARA Y. Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane[J]. Journal of Crystal Growth, 1994, 135(1/2): 61-70.

[87] 苗瑞霞.腐蚀参数对SiC单晶材料位错腐蚀效果的影响[J].科技创新导报,2013,10(25):87-89.

[88] 崔潆心,胡小波,徐现刚.物理气相传输法生长碳化硅单晶原生表面形貌研究[J].无机材料学报,2018,33(8):877-882.

张序清, 罗昊, 李佳君, 王蓉, 杨德仁, 皮孝东. 半导体碳化硅湿法腐蚀工艺研究[J]. 人工晶体学报, 2022, 51(2): 333. ZHANG Xuqing, LUO Hao, LI Jiajun, WANG Rong, YANG Deren, PI Xiaodong. Research Progress on Wet Etching of Semiconductor SiC[J]. Journal of Synthetic Crystals, 2022, 51(2): 333.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!