人工晶体学报, 2023, 52 (5): 732, 网络出版: 2023-06-11  

金刚石肖特基二极管的研究进展

Research Progress of Diamond Schottky Barrier Diodes
作者单位
1 西安交通大学, 电子物理与器件教育部重点实验室, 西安 710049
2 西安交通大学电子与信息学部, 宽禁带半导体与量子器件研究所, 西安 710049
摘要
金刚石具有宽带隙(5.47 eV)、高载流子迁移率(空穴3 800 cm2/(V·s)、电子4 500 cm2/(V·s))、高热导率(22 W·cm-1·K-1)、高临界击穿场强(>10 MV/cm), 以及最优的Baliga器件品质因子, 使得金刚石半导体器件在高温、高频、高功率, 以及抗辐照等极端条件下有良好的应用前景。随着单晶金刚石CVD生长技术和p型掺杂的突破, 以硼掺杂金刚石为主的肖特基二极管(SBD)的研究广泛展开。本文详细介绍了金刚石SBD的工作原理, 探讨了高掺杂p型厚膜、低掺杂漂移区p型薄膜的生长工艺, 研究了不同金属与金刚石形成欧姆接触、肖特基接触的条件, 分析了横向、垂直、准垂直器件结构的制备工艺, 以及不同结构对SBD正向、反向、击穿特性的影响, 阐述了场板、钝化层、边缘终端等器件结构对SBD内部电场的调制作用, 进而提升器件反向击穿电压, 最后总结了金刚石SBD的应用前景及面临的挑战。
Abstract
Diamond has excellent material properties such as wide band gap (5.47 eV), high carrier mobility (3 800 cm2/(V·s) for holes and 4 500 cm2/(V·s) for electrons), high thermal conductivity (22 W·cm-1·K-1), high critical breakdown field strength (>10 MV/cm), and optimal Baliga’s figure of merit, which make diamond semiconductor devices ideal choices for the applications in extreme conditions such as high temperature, high frequency, high power, and strong irradiation. With the breakthroughs in diamond crystal growth by CVD techniques and p-type doping of diamond crystal, research on Schottky barrier diode (SBD) based on boron-doped diamond has been widely carried out. In this review, the working principles of the diamond SBD are introduced in detail. The growth processes of highly doped p-type thick films, p-type films of low doping drift region are investigated, and the conditions for the formation of ohmic contact and Schottky contact between different metals and diamond crystals are studied. Then the preparation processes of transverse, vertical and pseudo-vertical device structures and their effect on forward, reverse and breakdown characteristics of the SBDs are analyzed. The modulation of the internal electric field of SBDs by device structures like field plate, passivation layer and edge terminal, which strengthens the reverse breakdown voltage of the device, is illustrated. Finally, the application prospects and challenges of diamond SBDs are summarized.
参考文献

[1] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672.

[2] 赵正平. 超宽禁带半导体金刚石功率电子学研究的新进展[J]. 半导体技术, 2021, 46(1): 1-14.

[3] BERNHARD D. Low-Pressure Synthetic Diamond[M]. Berlin: Springer, 1998: 331.

[4] SHENAI K, SCOTT R S, BALIGA B J. Optimum semiconductors for high-power electronics[J]. IEEE Transactions on Electron Devices, 1989, 36(9): 1811-1823.

[5] ALEKSOV A, KUBOVIC M, KAEB N, et al. Diamond field effect transistors: concepts and challenges[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 391-398.

[6] DENISENKO A, KOHN E. Diamond power devices. Concepts and limits[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 491-498.

[7] ARKHIPOVA E A, DEMIDOV E V, DROZDOV M N, et al. Ohmic contacts to CVD diamond with boron-doped delta layers[J]. Semiconductors, 2019, 53(10): 1348-1352.

[8] ACHARD J, ARAUJO D, ARNAULT J C, et al. Power electronics device applications of diamond semiconductors[M]. Cambridge: Woodhead Publishing, 2018

[9] TERAJI T, ISOYA J, WATANABE K, et al. Homoepitaxial diamond chemical vapor deposition for ultra-light doping[J]. Materials Science in Semiconductor Processing, 2017, 70: 197-202.

[10] BARJON J, CHIKOIDZE E, JOMARD F, et al. Homoepitaxial boron-doped diamond with very low compensation[J]. Physica Status Solidi (a), 2012, 209(9): 1750-1753.

[11] YAP C M, ANSARI K, XIAO S, et al. Properties of near-colourless lightly boron doped CVD diamond[J]. Diamond and Related Materials, 2018, 88: 118-122.

[12] ISSAOUI R, ACHARD J, WILLIAM L, et al. Thick and widened high quality heavily boron doped diamond single crystals synthetized with high oxygen flow under high microwave power regime[J]. Diamond and Related Materials, 2019, 94: 88-91.

[13] 王若铮, 闫秀良, 彭 博, 等. 高质量硼掺杂单晶金刚石同质外延及电学性质研究[J]. 人工晶体学报, 2022, 51(5): 893-900.

[14] 吴 超, 马志斌, 严 垒, 等. CVD单晶金刚石的研究进展[J]. 金刚石与磨料磨具工程, 2014, 34(1): 57-63.

[15] TERAJI T. High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition[J]. Journal of Applied Physics, 2015, 118(11): 115304.

[16] WANG R Z, PENG B, BAI H, et al. Morphology, defects and electrical properties of boron-doped single crystal diamond under various oxygen concentration[J]. Materials Letters, 2022, 322: 132345.

[17] TANG L, YUE R F, WANG Y. N-type B-S co-doping and S doping in diamond from first principles[J]. Carbon, 2018, 130: 458-465.

[18] LIU D Y, HAO L C, CHEN Z A, et al. Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition[J]. Applied Physics Letters, 2020, 117(2): 022101.

[19] BOUSSADI A, TALLAIRE A, BRINZA O, et al. Thick heavily boron doped CVD diamond films homoepitaxially grown on (111)-oriented substrates[J]. Diamond and Related Materials, 2017, 79: 108-111.

[20] MORTET V, PERNOT J, JOMARD F, et al. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates[J]. Diamond and Related Materials, 2015, 53: 29-34.

[21] TALLAIRE A, VALENTIN A, MILLE V, et al. Growth of thick and heavily boron-doped (113)-oriented CVD diamond films[J]. Diamond and Related Materials, 2016, 66: 61-66.

[22] TAYLOR A, BALUCHOV S, FEKETE L, et al. Growth and comparison of high-quality MW PECVD grown B doped diamond layers on{118}, {115} and {113}single crystal diamond substrates[J]. Diamond and Related Materials, 2022, 123: 108815.

[23] 王艳丰, 王宏兴. MPCVD单晶金刚石生长及其电子器件研究进展[J]. 人工晶体学报, 2020, 49(11): 2139-2152.

[24] RHODERICK E H, ROTHWARF A. Metal-semiconductor contacts[J]. Physics Today, 1979, 32(5): 66-71.

[25] 赵化彬. AlGaN/GaN肖特基二极管电学及光电特性研究[D]. 西安: 西安电子科技大学, 2020.

[26] KONO S, TERAJI T, KODAMA H, et al. Direct determination of the barrier height of Ti-based ohmic contact on p-type diamond (001)[J]. Diamond and Related Materials, 2015, 60: 117-122.

[27] WANG Y Y, LIU X Q, ZHEN C M, et al. Ohmic contacts and interface properties of Au/Ti/p-diamond prepared by r.f. sputtering[J]. Surface and Interface Analysis, 2000, 29(7): 478-481.

[28] HOFF H A, WAYTENA G L, VOLD C L, et al. Ohmic contacts to semiconducting diamond using a Ti/Pt/Au trilayer metallization scheme[J]. Diamond and Related Materials, 1996, 5(12): 1450-1456.

[29] MANIFOLD S A, KLEMENCIC G, THOMAS E L H, et al. Contact resistance of various metallisation schemes to superconducting boron doped diamond between 1.9 and 300 K[J]. Carbon, 2021, 179: 13-19.

[30] ZHEN C M, WANG X Q, WU X C, et al. Au/p-diamond ohmic contacts deposited by RF sputtering[J]. Applied Surface Science, 2008, 255(5): 2916-2919.

[31] LI F N, ZHANG J W, WANG X L, et al. Barrier heights of Au on diamond with different terminations determined by X-ray photoelectron spectroscopy[J]. Coatings, 2017, 7(7): 88.

[32] WANG W, HU C, LI F N, et al. Palladium Ohmic contact on hydrogen-terminated single crystal diamond film[J]. Diamond and Related Materials, 2015, 59: 90-94.

[33] DAS K, VENKATESAN V, HUMPHREYS T P. Ohmic contacts on diamond by B ion implantation and TiC-Au and TaSi2-Au metallization[J]. Journal of Applied Physics, 1994, 76(4): 2208-2212.

[34] ZHAO D, LI F N, LIU Z C, et al. Effects of rapid thermal annealing on the contact of tungsten/p-diamond[J]. Applied Surface Science, 2018, 443: 361-366.

[35] ZHAO D, LIU Z C, ZHANG X F, et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method[J]. Applied Physics Letters, 2018, 112(9): 092102.

[36] KON S, SCHNEIDER H, ISOIRD K, et al. An assessment of contact metallization for high power and high temperature diamond Schottky devices[J]. Diamond and Related Materials, 2012, 27/28: 23-28.

[37] TERAJI T, KOIDE Y, ITO T. Schottky barrier height and thermal stability of p-diamond (100) Schottky interfaces[J]. Thin Solid Films, 2014, 557: 241-248.

[38] PIERO J C, ARAJO D, FIORI A, et al. Atomic composition of WC/and Zr/O-terminated diamond Schottky interfaces close to ideality[J]. Applied Surface Science, 2017, 395: 200-207.

[39] TERAJI T, GARINO Y, KOIDE Y, et al. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment[J]. Journal of Applied Physics, 2009, 105(12): 126109.

[40] TRAOR A, MURET P, FIORI A, et al. Zr/oxidized diamond interface for high power Schottky diodes[J]. Applied Physics Letters, 2014, 104(5): 052105.

[41] POLYAKOV A, SMIRNOV N, TARELKIN S, et al. Electrical properties of diamond platinum vertical Schottky barrier diodes[J]. Materials Today: Proceedings, 2016, 3: S159-S164.

[42] UEDA K, KAWAMOTO K, SOUMIYA T, et al. High-temperature characteristics of Ag and Ni/diamond Schottky diodes[J]. Diamond and Related Materials, 2013, 38: 41-44.

[43] LI F N, LIU J W, ZHANG J W, et al. Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 2016, 370: 496-500.

[44] IKEDA K, UMEZAWA H, RAMANUJAM K, et al. Thermally stable Schottky barrier diode by Ru/diamond[J]. Applied Physics Express, 2009, 2: 011202.

[45] HU C, LIU Z C, ZHANG J W, et al. Diamond Schottky barrier diode with fluorine- and oxygen-termination[J]. MRS Advances, 2016, 1(16): 1125-1130.

[46] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18.

[47] GILDENBLAT G S, GROT S A, WRONSKI C R, et al. Electrical characteristics of Schottky diodes fabricated using plasma assisted chemical vapor deposited diamond films[J]. Applied Physics Letters, 1988, 53(7): 586-588.

[48] GILDENBLAT G S, GROT S A, WRONSKI C R, et al. Schottky diodes with thin film diamond base[C]//Technical Digest, International Electron Devices Meeting. December 11-14, 1988, San Francisco, CA, USA. IEEE, 2002: 626-629.

[49] GILDENBLAT G S, GROT S A, HATFIELD C W, et al. High-temperature Schottky diodes with thin-film diamond base[J]. IEEE Electron Device Letters, 1990, 11(9): 371-372.

[50] EBERT W, VESCAN A, BORST T H, et al. Epitaxial diamond Schottky barrier diode with on/off current ratios in excess of 107 at high temperatures[C]//Proceedings of 1994 IEEE International Electron Devices Meeting. December 11-14, 1994, San Francisco, CA, USA. IEEE, 2002: 419-422.

[51] PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 661-665.

[52] TWITCHEN D J, WHITEHEAD A J, COE S E, et al. High-voltage single-crystal diamond diodes[J]. IEEE Transactions on Electron Devices, 2004, 51(5): 826-828.

[53] IKEDA K, UMEZAWA H, SHIKATA S. Edge termination techniques for p-type diamond Schottky barrier diodes[J]. Diamond and Related Materials, 2008, 17(4/5): 809-812.

[54] VOLPE P N, MURET P, PERNOT J, et al. High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer[J]. Physica Status Solidi (a), 2010, 207(9): 2088-2092.

[55] REINKE P, BENKHELIFA F, KIRSTE L, et al. Influence of different surface morphologies on the performance of high-voltage, low-resistance diamond Schottky diodes[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2471-2477.

[56] SHIGEMATSU S, OISHI T, SEKI Y, et al. Schottky barrier diodes fabricated on high-purity type-IIa CVD diamond substrates using an all-ion-implantation process[J]. Japanese Journal of Applied Physics, 2021, 60(5): 050903.

[57] WANG J, ZHAO D, SHAO G Q, et al. Fabrication of dual-barrier planar structure diamond Schottky diodes by rapid thermal annealing[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1176-1180.

[58] WANG J, SHAO G Q, LI Q, et al. Vertical diamond trench MOS barrier Schottky diodes with high breakdown voltage[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6231-6235.

[59] SAHA N C, IRIE Y, SEKI Y, et al. 1651-V all-ion-implanted Schottky barrier diode on heteroepitaxial diamond with 3.6×10 h on/off ratio[J]. IEEE Electron Device Letters, 2023, 44(2): 293-296.

[60] TOKUYUKI T E R A J I, SATOSHI K O I Z U M I, YASUO K O I D E, et al. Electric field breakdown of lateral Schottky diodes of diamond[J]. Japanese Journal of Applied Physics, 2007, 46(8/11): L196-L198.

[61] KUMARESAN R, UMEZAWA H, SHIKATA S. Vertical structure Schottky barrier diode fabrication using insulating diamond substrate[J]. Diamond and Related Materials, 2010, 19(10): 1324-1329.

[62] KUMARESAN R, UMEZAWA H, SHIKATA S. Parasitic resistance analysis of pseudovertical structure diamond Schottky barrier diode[J]. Physica Status Solidi (a), 2010, 207(8): 1997-2001.

[63] BORMASHOV V S, TERENTIEV S A, BUGA S G, et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique[J]. Diamond and Related Materials, 2017, 75: 78-84.

[64] 郁鑫鑫, 周建军, 王艳丰, 等. 高电流密度金刚石肖特基势垒二极管研究[J]. 固体电子学研究与进展, 2019, 39(2): 77-80+85.

[65] ROY S, BHATTACHARYYA A, RANGA P, et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with baliga’s figure of merit over 1 GW/cm2[J]. IEEE Electron Device Letters, 2021, 42(8): 1140-1143.

[66] JIN F Y, CHEN P H, HUNG W C, et al. Analysis of breakdown-voltage increase on SiC junction barrier Schottky diode under negative bias stress[J]. IEEE Transactions on Electron Devices, 2023, 70(1): 191-195.

[67] SHANKAR B, GUPTA S K, TAUBE W R, et al. Dependence of field plate parameters on dielectric constant in a 4H-SiC Schottky diode[C]//2014 IEEE 2nd International Conference on Emerging Electronics (ICEE). December 3-6, 2014, Bengaluru, India. IEEE, 2015: 1-3.

[68] ZHANG Y L, LIU P F, ZHANG J, et al. 1.2-kV 4H-SiC JBS diodes engaging P-type retrograde implants[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6963-6970.

[69] UMEZAWA H, NAGASE M, KATO Y, et al. High temperature application of diamond power device[J]. Diamond and Related Materials, 2012, 24: 201-205.

[70] UMEZAWA H, NAGASE M, KATO Y, et al. Diamond vertical Schottky barrier diode with Al2O3 field plate[J]. Materials Science Forum, 2012, 717/718/719/720: 1319-1321.

[71] ZHAO D, LIU Z C, WANG J, et al. Reduction in reverse leakage current of diamond vertical Schottky barrier diode using SiNX field plate structure[J]. Results in Physics, 2019, 13: 102250.

[72] YU X X, ZHOU J J, WANG Y F, et al. Breakdown enhancement of diamond Schottky barrier diodes using boron implanted edge terminations[J]. Diamond and Related Materials, 2019, 92: 146-149.

[73] ZHANG S M, LI Q, WANG J, et al. High breakdown electric field diamond Schottky barrier diode with SnO2 field plate[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6917-6921.

[74] LI Q, WANG J, SHAO G Q, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diode with annealing method and AlO field plate structure[J]. IEEE Electron Device Letters, 2022, 43(11): 1937-1940.

[75] LI Q, WANG J, CHEN G Q, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diodes by selective growth nitrogen-doped diamond field plate[J]. Diamond and Related Materials, 2023, 134: 109799.

[76] AL-AHMADI N A. Metal oxide semiconductor-based Schottky diodes: a review of recent advances[J]. Materials Research Express, 2020, 7(3): 032001.

[77] SHAO G Q, WANG J, LIU Z C, et al. Performance-improved vertical Zr/diamond Schottky barrier diode with lanthanum hexaboride interfacial layer[J]. IEEE Electron Device Letters, 2021, 42(9): 1366-1369.

[78] WANG J, SHAO G Q, CHEN G Q, et al. Schottky barrier height modulation of Zr/p-diamond Schottky contact by inserting ultrathin atomic layer-deposited Al2O3[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 5995-6000.

[79] ZHANG S M, WANG J, LI Q, et al. Improved-performance diamond Schottky barrier diode with tin oxide interlayer[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6260-6264.

[80] REZEK B, WATANABE H, NEBEL C E. High carrier mobility on hydrogen terminated 〈100〉 diamond surfaces[J]. Applied Physics Letters, 2006, 88(4): 042110.

[81] TSUGAWA K, NODA H, HIROSE K, et al. Schottky barrier heights, carrier density, and negative electron affinity of hydrogen-terminated diamond[J]. Physical Review B, 2010, 81(4): 045303.

[82] MAIER F, RISTEIN J, LEY L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces[J]. Physical Review B, 2001, 64(16): 165411.

[83] RIETWYK K J, WONG S L, CAO L, et al. Work function and electron affinity of the fluorine-terminated (100) diamond surface[J]. Applied Physics Letters, 2013, 102(9): 091604.

[84] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31.

[85] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/ fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416.

[86] ZHAO D, LIU Z C, WANG J, et al. Performance improved vertical diamond Schottky barrier diode with fluorination-termination structure[J]. IEEE Electron Device Letters, 2019, 40(8): 1229-1232.

[87] LIU Z C, YI W Y, ZHAO D, et al. Diamond avalanche diodes for obtaining high-voltage pulse with subnanosecond front edge[J]. AIP Advances, 2020, 10(6): 065015.

[88] BIN ABU BAKAR M H, TRAORE A, GUO J J, et al. Optically detected magnetic resonance of nitrogen-vacancy centers in vertical diamond Schottky diodes[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1061.

[89] SURDI H, KOECK F A M, AHMAD M F, et al. Demonstration and analysis of ultrahigh forward current density diamond diodes[J]. IEEE Transactions on Electron Devices, 2022, 69(1): 254-261.

[90] HAZDRA P, LAPOSA A, OBNˇ Z, et al. Pseudo-vertical Mo/Au Schottky diodes on {113} oriented boron doped homoepitaxial diamond layers[J]. Diamond and Related Materials, 2022, 126: 109088.

[91] KWAK T, HAN S H, CHOI U, et al. Diamond Schottky barrier diode fabricated on high-crystalline quality misoriented heteroepitaxial (001) diamond substrate[J]. Diamond and Related Materials, 2023, 133: 109750.

[92] SHAO G Q, WANG J, WANG Y F, et al. Inhomogeneous heterojunction performance of Zr/diamond Schottky diode with Gaussian distribution of barrier heights for high sensitivity temperature sensor[J]. Sensors and Actuators A: Physical, 2022, 347: 113906.

彭博, 李奇, 张舒淼, 樊叔维, 王若铮, 王宏兴. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732. PENG Bo, LI Qi, ZHANG Shumiao, FAN Shuwei, WANG Ruozheng, WANG Hongxing. Research Progress of Diamond Schottky Barrier Diodes[J]. Journal of Synthetic Crystals, 2023, 52(5): 732.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!