压电与声光, 2022, 44 (6): 841, 网络出版: 2023-01-27  

高Q值声表面波谐振器研究进展

Research Progress of High Q Surface Acoustic Wave Resonators
作者单位
1 西南科技大学 信息工程学院, 四川 绵阳 621010
2 特殊环境机器人技术 四川省重点实验室, 四川 绵阳 621010
3 杭州左蓝微电子技术有限公司, 浙江 杭州 310000
摘要
声表面波(SAW)谐振器作为各类SAW器件的核心元件, 其性能决定SAW器件的各项指标, 其中以谐振器品质因数(Q)值最重要。该文介绍了影响SAW谐振器Q值的因素, 指出目前高Q值SAW谐振器的衬底结构大多为异质声学层结构, 且异质声学层结构本质为一维声子晶体。结果表明, 通过在谐振器的多个位置构建声子晶体对SAW谐振器的声场能量可实现全三维约束, 以提升谐振器Q值, 最后展望了高Q值SAW谐振器的理想结构。
Abstract
As the core element of various surface acoustic wave (SAW) devices, the performance of SAW resonator determines various specifications of SAW devices, among which the quality factor (Q) of resonator is the most important. The factors affecting the Q value of SAW resonators are introduced in this paper. It is pointed out that most of the substrate structure of SAW resonator with high Q is heterogeneous acoustic layer structure, and the heterogeneous acoustic layer structure is essentially one-dimensional phononic crystal. The results show that the Q value of the resonator can be improved by constructing phononic crystals at multiple positions to fully 3-D constrain the acoustic field energy of SAW resonator. Finally, the possible ideal structure of SAW resonator with high Q in the future is prospected.
参考文献

[1] 张晨睿.谐振型声表面波无线温度传感器阅读器的设计与实现[D].南京: 东南大学, 2014.

[2] TAKAI T,IWAMOTO H,TAKAMINE Y,et al.High performance SAW resonator on new multi-layered substrate using LiTaO3 crystal[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2017,64(9):1382-1389.

[3] KIMURA T, OMURA M,KISHIMOTO Y,et al.Comparative study of acoustic wave devices using thin piezoelectric plates in the 3-5 GHz gange[J]. Microwave Theory and Techniques IEEE Transactions on, 2019, 67(3):915-921.

[4] KIMURA T,DAIMON K,OGAMI T,et al.S0 mode Lamb wave resonators using LiNbO3 thin plate on acoustic multilayer reflector[J].Jpn J Appl Phys,2013,52(7):1044-1055.

[5] KIMURA T,KISHIMOTO Y,OMURA M,et al.3.5 GHz longitudinal leaky surface acoustic wave resonator using a multilayered waveguide structure for high acoustic energy confinement[J]. Jpn J Appl Phys, 2018,57(Suppl.1):07LD15.

[6] TAKAI T,IWAMOTO H,TAKAMINE Y,et al.High-performance SAW resonator with simplified LiTaO3/SiO2 double layer structure on Si substrate[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2019, 66(5):1006-1013.

[7] KHELIF A,CHOUJAA A,BENCHABANE S,et al.Omnidirectional band gap mirror for surface acoustic wave[C]//Springer, Dordrecht:IUTAM Symposium on Recent Advances of Acoustic Waves in Solids,2010:187-192.

[8] 石林豪, 轩伟鹏, 孙玲玲, 等. 基于二维声子晶体的体声波谐振器仿真分析[J].物联网学报,2022,6(1):13-19.

[9] 蒋鹏. 声子晶体波导结构的制备及特性研究[D].哈尔滨: 哈尔滨工业大学,2013.

[10] SIDDIQI M,LEE E Y.AlN-on-Si MEMS resonator bounded by wide acoustic bandgap two-dimensional phononic crystal anchors[C]//[S.l.]:IEEE International Conference on Micro Electro Mechanical Systems(MEMS). IEEE,2018:727-730.

[11] TONG Y J,HAN T.Anchor loss reduction of lamb wave resonator by pillar-based phononic crystal[J].Micromachines,2021,12(1):62.

[12] RICHARDSON M,CHEEMALAPATI S,EVERLY R,et al.Design and fabrication of a SAW device with Ta filled microcavities inserted into its delay path for improved power transfer[J]. Journal of Vacuum Science and Technology B,2015,33(2):022001(8).

[13] GAO A,ZOU J,WU T.Narrowband impedance transformer with extremely high transformation ratio of 200[J]. IEEE Electron Device Letters,2019,40(11):1820-1823.

[14] AKIYAMA M,KAMOHARA T,KANO K,et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering[J]. Advanced Materials,2009,21(5):593-596.

[15] SUZUKI M,GOMI M,KAKIO S.Propagation characteristics of longitudinal-type leaky surface acoustic wave on layered structure consisting of ScxAl1-xN film/LiNbO3 substrate[J].Jpn J Appl Phys,2018,57(Suppl.1):07LD06.

[16] SUZUKI M,SAWADA N,KAKIO S.Analysis of longitudinal leaky surface acoustic wave propagation characteristics on a piezoelectric ScAlN layer/sapphire or quartz substrate[J].Jpn J Appl Phys,2019,58(SG):SGGC08.

[17] SUZUKI M,KAKIO S.Analysis of leaky surface acoustic wave characteristics propagating on high piezoelectric ScAlN film/high velocity quartz substrate[J]. Jpn J Appl Phys,2020,59(SK): SKKC07.

[18] PASTUREAU L F,AMARA S,CALIENDO C,et al. High quality and low loss surface acoustic wave SAW resonator based on chromium-doped AlN on sapphire[J]. Applied Physics A,2021,127(4):1-11.

[19] LIU H L, ZHANG Q,ZHAO X,et al.Highly coupled leaky surface acoustic wave on hetero acoustic layer structures based on ScAlN thin films with a c-axis tilt angle[J]. Jpn J Appl Phys,2021,60(3):031002.

[20] POBERAJ G,HU H,SOHLER W,et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J].Laser & Photonics Reviews,2012,6(4):488-503.

[21] GUO Pengjun,ZHANG Jingzhou,YANG Yuanfan,et al.Study on wireless communication network architecture and access control algorithm in aircraft[J].Computer Science,2022,49(9):268-274.

[22] KADOTA M,Y ISHII,TANAKA S.Ultra-wideband T- and π-type ladder filters using a fundamental shear horizontal mode plate wave in a LiNbO3 plate[J].Jpn J Appl Phys,2019,58(SG):SGGC10(4).

赵钊, 高杨, 张树民. 高Q值声表面波谐振器研究进展[J]. 压电与声光, 2022, 44(6): 841. ZHAO Zhao, GAO Yang, ZHANG Shumin. Research Progress of High Q Surface Acoustic Wave Resonators[J]. Piezoelectrics & Acoustooptics, 2022, 44(6): 841.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!