人工晶体学报, 2023, 52 (2): 281, 网络出版: 2023-03-18  

高温扩散工艺制备带隙可调的β-(AlxGa1-x)2O3薄膜

β-(AlxGa1-x)2O3 Thin Films with Tunable Band Gap Prepared by High Temperature Diffusion
作者单位
1 贵州大学大数据与信息工程学院,贵州省电子功能复合材料特色重点实验室,贵阳 550025
2 贵州商学院计算机与信息工程学院,贵阳 550014
3 贵阳学院电子与通信工程学院,贵阳 550005
摘要
β-(AlxGa1-x)2O3因其优异的抗击穿及带隙可调节性在现代功率器件及深紫外光电探测等领域展现出巨大的应用前景,然而传统直接生长工艺的复杂性和难度限制了其进一步的发展。因此,本文采用较为简单的高温扩散工艺在c面蓝宝石衬底上成功制备了β-(AlxGa1-x)2O3纳米薄膜。利用X射线衍射、原子力显微镜、扫描电子显微镜和紫外-可见分光光度计对其进行了表征。由于高温下蓝宝石衬底中的Al原子向Ga2O3层扩散,β-Ga2O3薄膜将转变为Al、Ga原子比例不同的β-(AlxGa1-x)2O3薄膜。实验结果显示:当退火温度从1 010 ℃增加到1 250 ℃时,薄膜中Al的平均含量从0.033增加到0.371;当退火温度从950 ℃增加到1 250 ℃时,薄膜的厚度从186 nm增加到297 nm,粗糙度从2.31 nm增加到15.10 nm;当退火温度从950 ℃增加到1 190 ℃时,薄膜的带隙从4.79 eV增加至5.96 eV。结果表明高温扩散工艺能够有效调节β-(AlxGa1-x)2O3薄膜的光学带隙,为β-(AlxGa1-x)2O3基新型光电子器件提供了实验基础。
Abstract
β-(AlxGa1-x)2O3 presents great applications in modern power devices and deep ultraviolet photoelectric detection for their excellent anti-breakdown and tunable band gap. However, the complexity and difficulty of the traditional fabrication processes limit their further development. In this work, a relatively simple high temperature diffusion process was used to successfully prepare β-(AlxGa1-x)2O3 nano films on c-sapphire substrates. The films were investigated by X-ray diffraction, atomic force microscope, scanning electron microscope, and ultraviolet visible spectrophotometer. Since Al atoms in sapphire substrates will diffuse into the Ga2O3 layer at high temperatures, β-Ga2O3 thin films will be converted into β-(AlxGa1-x)2O3 thin films with different ratios of Al to Ga atoms. It illustrates that with the increase of annealing temperature from 1 010 ℃ to 1 250 ℃, the average content of Al in the films increases from 0.033 to 0.371. Meanwhile, the thickness of films increase from 186 nm to 297 nm, accompanied by the roughness increase from 2.31 nm to 15.10 nm with the increase of the annealing temperature from 950 ℃ to 1 250 ℃. While increasing the annealing temperature from 950 ℃ to 1 190 ℃, the band gap of films increases from 4.79 eV to 5.96 eV. The results suggest that the high temperature diffusion process can effectively adjust the optical band gap of β-(AlxGa1-x)2O3 thin films, providing an experimental basis for novel β-(AlxGa1-x)2O3-based optoelectronic devices.
参考文献

[1] 郭道友, 李培刚, 陈政委, 等. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展[J]. 物理学报, 2019, 68(7): 078501.

[2] MA J L, XIA X C, YAN S, et al. Stable and self-powered solar-blind ultraviolet photodetectors based on a Cs3Cu2I5/β-Ga2O3 heterojunction prepared by dual-source vapor codeposition[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15409-15419.

[3] XIE C, LU X T, LIANG Y, et al. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application[J]. Journal of Materials Science & Technology, 2021, 72: 189-196.

[4] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415.

[5] JEONG S H, VU T K O, KIM E K. Post-annealing effects on Si-doped Ga2O3 photodetectors grown by pulsed laser deposition[J]. Journal of Alloys and Compounds, 2021, 877: 160291.

[6] BHALERAO S R, LUPO D, BERGER P R. Flexible, gallium oxide (Ga2O3) thin film transistors (TFTs) and circuits for the Internet of Things (IoT)[C]//2021 IEEE International Flexible Electronics Technology Conference (IFETC). August 8-11, 2021, Columbus, OH, USA. IEEE, 2021: 32-34.

[7] CHEN Z W, WANG X, NODA S, et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films[J]. Superlattices and Microstructures, 2016, 90: 207-214.

[8] CHEN Z W, WANG X, ZHANG F B, et al. Temperature dependence of luminescence spectra in europium doped Ga2O3 film[J]. Journal of Luminescence, 2016, 177: 48-53.

[9] DENG G F, SAITO K, TANAKA T, et al. Low driven voltage green electroluminescent device based on Er∶Ga2O3/GaAs heterojunction[J]. Optical Materials, 2021, 116: 111078.

[10] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001.

[11] YANG Z C, WU J W, LI P J, et al. Resistive random access memory based on gallium oxide thin films for self-powered pressure sensor systems[J]. Ceramics International, 2020, 46(13): 21141-21148.

[12] LI X, YANG J G, MA H P, et al. Atomic layer deposition of Ga2O3/ZnO composite films for high-performance forming-free resistive switching memory[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30538-30547.

[13] 吕 瑜. 蓝宝石衬底上Ga2O3薄膜的制备及性质研究[D]. 济南: 山东大学, 2012.

[14] 王新月, 张胜男, 霍晓青, 等. 超宽禁带半导体β-Ga2O3相关研究进展[J]. 人工晶体学报, 2021, 50(11): 1995-2012.

[15] HIGASHIWAKI M, JESSEN G H. Guest Editorial: the dawn of gallium oxide microelectronics[J]. Applied Physics Letters, 2018, 112(6): 060401.

[16] PEELAERS H, VARLEY J B, SPECK J S, et al. Structural and electronic properties of Ga2O3-Al2O3 alloys[J]. Applied Physics Letters, 2018, 112(24): 242101.

[17] KOKUBUN Y, MIURA K, ENDO F, et al. Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors[J]. Applied Physics Letters, 2007, 90(3): 031912.

[18] LI H, YUAN S H, HUANG T M, et al. Impact of thermal-induced sapphire substrate erosion on material and photodetector characteristics of sputtered Ga2O3 films[J]. Journal of Alloys and Compounds, 2020, 823: 153755.

[19] WENG W Y, HSUEH T J, CHANG S J, et al. An (AlxGa1-x)2O3 metal-semiconductor-metal VUV photodetector[J]. IEEE Sensors Journal, 2011, 11(9): 1795-1799.

[20] ZHANG Y W, NEAL A, XIA Z B, et al. Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures[J]. Applied Physics Letters, 2018, 112(17): 173502.

[21] MATSUZAKI K, YANAGI H, KAMIYA T, et al. Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3[J]. Applied Physics Letters, 2006, 88(9): 092106.

[22] KRANERT C, JENDERKA M, LENZNER J, et al. Lattice parameters and Raman-active phonon modes of β-(AlxGa1-x)2O3[J]. Journal of Applied Physics, 2015, 117(12): 125703.

[23] KIM H W, KIM N H. Annealing effects on the properties of Ga2O3 thin films grown on sapphire by the metal organic chemical vapor deposition[J]. Applied Surface Science, 2004, 230(1/2/3/4): 301-306.

[24] GOYAL A, YADAV B S, THAKUR O P, et al. Effect of annealing on β-Ga2O3 film grown by pulsed laser deposition technique[J]. Journal of Alloys and Compounds, 2014, 583: 214-219.

[25] MOON S Y, JUNG S W, LEE H J, et al. Effect of nitrogen and oxygen annealing on (Al0.1Ga0.9)2O3/4H-SiC heterojunction diodes[J]. Thin Solid Films, 2022, 751: 139204.

[26] SHEN H, BASKARAN K, YIN Y N, et al. Effect of thickness on the performance of solar blind photodetectors fabricated using PLD grown β-Ga2O3 thin films[J]. Journal of Alloys and Compounds, 2020, 822: 153419.

[27] 蔡文为, 刘祥炜, 王 浩, 等. 生长气压对分子束外延β-Ga2O3薄膜特性的影响[J]. 人工晶体学报, 2022, 51(7): 1152-1157.

[28] LI M, MI W, ZHOU L W, et al. Effect of oxygen flow ratio on crystallization and structural characteristics of gallium oxide thin films[J]. Ceramics International, 2022, 48(3): 3751-3756.

[29] TAO J J, LU H L, GU Y, et al. Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films[J]. Applied Surface Science, 2019, 476: 733-740.

[30] XIAO H L, SHAO G Q, SAI Q L, et al. Wide bandgap engineering of β-(Al, Ga)2O3 mixed crystals[J]. Journal of Inorganic Materials, 2016, 31(11): 1258.

谭黎, 张俊, 张敏, 赵荣力, 邓朝勇, 崔瑞瑞. 高温扩散工艺制备带隙可调的β-(AlxGa1-x)2O3薄膜[J]. 人工晶体学报, 2023, 52(2): 281. TAN Li, ZHANG Jun, ZHANG Min, ZHAO Rongli, DENG Chaoyong, CUI Ruirui. β-(AlxGa1-x)2O3 Thin Films with Tunable Band Gap Prepared by High Temperature Diffusion[J]. Journal of Synthetic Crystals, 2023, 52(2): 281.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!