硅酸盐学报, 2022, 50 (10): 2734, 网络出版: 2023-01-22  

石墨烯/超高温陶瓷复合材料研究进展

Research Progress on Graphene/Ultra-High Temperature Ceramic Composites
作者单位
1 军事科学院, 国防科技创新研究院, 北京 100071
2 中国航发北京航空材料研究院, 石墨烯及应用研究中心, 北京100095
摘要
超高温陶瓷材料耐温性能优异, 但本征脆性和较差的抗热冲击性能一直都是限制其进一步工程应用的主要障碍。石墨烯作为一种碳原子排列成蜂窝结构的二维纳米材料, 具有优异的力学、电学和热学性能, 常被作为添加相来改性陶瓷基体, 使其成为陶瓷复合材料中理想的增韧材料, 实现复合材料的功能化和结构化。本文对石墨烯/超高温陶瓷基复合材料的制备工艺、仿生构筑、微观形貌、宏观性能等方面的研究成果进行了全面的综述, 着重论述了石墨烯对超高温陶瓷基体的增韧作用效果及机理、热学性能、抗热震性能、抗氧化性能的影响, 并对目前面临的挑战和未来发展进行展望。
Abstract
Ultrahigh-temperature ceramics (UHTCs) are a kind of thermal protecting material used in the extreme thermal environment due to their excellent temperature resistance. However, their intrinsic brittleness and poor thermal shock resistance restrict the engineering applications. Graphene as a two-dimensional (2D) nano-material where carbon atoms are arranged in a honeycomb structure has superior mechanical, electrical and thermal properties. It is often used as an additive phase to modify the ceramic matrix, and is considered as an ideal toughening material in ceramic composites to realize the functionalization and structuralization of composites. This review represented recent research work on the preparation process, bionic construction method, microstructure and macro properties of graphene/UHTCs. The toughening effects and mechanism, thermal properties, thermal shock resistance and oxidation resistance of UHTCs doped with graphene were discussed. In addition, some challenges and future development of this field were also put forwarded.
参考文献

[1] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5): 1347-1364.

[2] CENTENO A, ROCHA V G, ALONSO B, et al. Graphene for tough and electroconductive alumina ceramics[J]. J Eur Ceram Soc, 2013, 33(15-16): 3201-3210.

[3] MIRANZO P, RAMREZ C, ROMN-MANSO B, et al. In situ processing of electrically conducting graphene/SiC nanocomposites[J]. J Europ Ceram Soc, 2013, 33(10): 1665-1674.

[4] YAZDANI B, XIA Y, AHMAD I, et al. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites[J]. J Eur Ceram Soc, 2015, 35(1): 179-186.

[5] MARKANDAN K, TAN M T T, CHIN J, et al. A novel synthesis route and mechanical properties of Si-O-C cured yttria stabilised zirconia (YSZ)-graphene composite[J]. Ceram Int, 2015, 41(3): 3518-3525.

[6] CHO J, BOCCACCINI A R, SHAFFER M S P. Ceramic matrix composites containing carbon nanotubes[J]. J Mater Sci, 2009, 44(8): 1934-1951.

[7] 陈丽敏, 索相波, 王安哲, 等. ZrB2基超高温陶瓷材料抗热震性能及热震失效机制研究进展[J]. 硅酸盐学报, 2018, 46(9): 1235-1243.

[8] 王帅, 金鑫鑫, 董丽敏, 等. 多孔硼化锆-碳化硅-石墨超高温陶瓷的抗热冲击性能[J]. 硅酸盐学报, 2018, 46(6): 766-771.

[9] 张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料的研究进展[J]. 科学通报, 2015, 60(3): 257-266.

[10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[11] GMEZ-NAVARRO C, BURGHARD M, KERN K. Elastic properties of chemically derived single graphene sheets[J]. Nano Lett, 2008, 8(7): 2045-2049.

[12] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Adv Mater, 2010, 22(35): 3906-3924.

[13] 胡洋洋, 许崇海, 肖光春, 等. 氧化铝/氧化石墨烯复合陶瓷的制备及性能[J]. 硅酸盐学报, 2016, 44(3): 432-437.

[14] BALZSI C, FOGARASSY Z, TAPASZT O, et al. Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing[J]. J Eur Ceram Soc, 2017, 37(12): 3797-3804.

[15] GRIGORIEV S, PERETYAGIN P, SMIRNOV A, et al. Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics[J]. J Eur Ceram Soc, 2017, 37(6): 2473-2479.

[16] LIU J, YAN H, JIANG K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J]. Ceram Int, 2013, 39(6): 6215-6221.

[17] PETRUS M, WOZNIAK J, CYGAN T, et al. Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene[J]. Ceram Int, 2017, 43(6): 5007-5013.

[18] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites[J]. ACS Nano, 2011, 5(4): 3182-3190.

[19] TKALYA E E, GHISLANDI M, DE WITH G, et al. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites[J]. Curr Opin Colloid In Sci, 2012, 17(4): 225-232.

[20] WANG K, WANG Y, FAN Z, et al. Preparation of graphene nanosheet/alumina composites by spark plasma sintering[J]. Mater Res Bull, 2011, 46(2): 315-318.

[21] GKIKAS G, BARKOULA N M, PAIPETIS A S. Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy[J]. Compos Part B Eng, 2012, 43(6): 2697-2705.

[22] APARNA R, SIVAKUMAR N, BALAKRISHNAN A, et al. An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants[J]. J Renew Sustain Energy, 2013, 5(3): 033123.

[23] AN X, SIMMONS T, SHAH R, et al. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications[J]. Nano Lett, 2010, 10(11): 4295-4301.

[24] 陈程, 云闯, 杨建, 等. 石墨烯/陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2017, 38(3): 176-188.

[25] MARKANDAN K, CHIN J K, TAN M T T. Recent progress in graphene based ceramic composites: A review[J]. J Mater Res, 2017, 32(1): 84-106.

[26] CHEN F, YAN K, SUN J, et al. From the research state of the thermal properties of graphene reinforced ceramics to the future of computer simulation[J]. Ceram Int, 2020, 46(11): 18428-18445.

[27] HUANG Y, WAN C. Controllable fabrication and multifunctional applications of graphene/ceramic composites[J]. J Adv Ceram, 2020, 9: 271-291.

[28] LIU Y, JIANG X, SHI J, et al. Research on the interface properties and strengthening-toughening mechanism of nanocarbon-toughened ceramic matrix composites[J]. Nanotechnol Rev, 2020, 9(1): 190-208.

[29] RAMREZ C, BELMONTE M, MIRANZO P, et al. Applications of ceramic/graphene composites and hybrids[J]. Materials, 2021, 14(8): 2071.

[30] SIMONENKO E P, SIMONENKO N P, SEVASTYANOV V G, et al. ZrB2/HfB2-SiC ultra-high-temperature ceramic materials modified by carbon components: The review[J]. Russ J Inorg Chem, 2018, 63(14): 1772-1795.

[31] ANTOU G, GUYOT P, PRADEILLES N, et al. Identification of densification mechanisms of pressure-assisted sintering: Application to hot pressing and spark plasma sintering of alumina[J]. J Mater Sci, 2015, 50(5): 2327-2336.

[32] ZHOU M, ZHONG J, ZHAO J, et al. Microstructures and properties of Si3N4/TiN composites sintered by hot pressing and spark plasma sintering[J]. Mater Res Bull, 2013, 48(5): 1927-1933.

[33] ACEVEDO L, USN S, UCHE J. Exergy transfer analysis of microwave heating systems[J]. Energy, 2014, 68: 349-363.

[34] 宋明, 李双, 谢志鹏. 放电等离子烧结石墨烯/3Y-TZP复合陶瓷结构及性能[J]. 材料热处理学报, 2015, 36(12): 1-6.

[35] PETRUS M, WOZNIAK J, CYGAN T, et al. Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene[J]. Ceram Int, 2017, 43: 5007-5013.

[36] YADHUKULAKRISHNAN G B, KARUMURI S, RAHMAN A, et al. Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites[J]. Ceram Int, 2013, 39(6): 6637-6646.

[37] NIETO A, LAHIRI D, AGARWAL A. Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide[J]. Scripta Mater, 2013, 69(9): 678-681.

[38] NGUYEN V H, DELBARI S A, ASL M S, et al. Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics[J]. Ceram Int, 2021, 47(9): 12459-12466.

[39] AKARSU M K, AKIN I. Mechanical properties and oxidation behavior of spark plasma sintered (Zr, Ti) B2 ceramics with graphene nanoplatelets[J]. Ceram Int, 2020, 46(16): 26109-26120.

[40] NIETO A, LAHIRI D, AGARWAL A. Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering[J]. Mater Sci Eng A, 2013, 582: 338-346.

[41] ASL M S, KAKROUDI M G. Characterization of hot-pressed graphene reinforced ZrB2-SiC composite[J]. Mater Sci Eng A, 2015, 625: 385-392.

[42] KARTHISELVA N S, MURTY B S, BAKSHI S R. Graphene nanoplatelets induce crystallographic texturing during reactive spark plasma sintering of titanium diboride[J]. Carbon, 2018, 133: 323-334.

[43] GRCAN K, INCI E, SAKAN ?倫, et al. Microstructures and mechanical properties of graphene platelets-reinforced spark plasma sintered tantalum diboride-silicon carbide composites[J]. Mater Res Express, 2019, 6(11): 115215.

[44] ZHANG X, AN Y, HAN J, et al. Graphene nanosheet reinforced ZrB2-SiC ceramic composite by thermal reduction of graphene oxide[J]. RSC Adv, 2015, 5(58): 47060-47065.

[45] AN Y, XU X, GUI K. Effect of SiC whiskers and graphene nanosheets on the mechanical properties of ZrB2-SiCw-graphene ceramic composites[J]. Ceram Int, 2016, 42(12): 14066-14070.

[46] XIA C, ASL M S, NAMINI A S, et al. Enhanced fracture toughness of ZrB2-SiCw ceramics with graphene nano-platelets[J]. Ceram Int, 2020, 46(16): 24906-24915.

[47] LI S, WEI C, CHENG J, et al. Crack tolerant TaC-SiC ceramics prepared by spark plasma sintering[J]. Ceram Int, 2020, 46(16): 25230-25235.

[48] SUN J, ZHAO J, HUANG Z, et al. Hybrid multilayer graphene and SiC whisker reinforced TiB2 based nano-composites by two-step sintering[J]. J Alloy Compd, 2021, 856: 157283.

[49] ZHANG B, CHENG L, LU Y, et al. Scalable preparation of graphene reinforced zirconium diboride composites with strong dynamic response[J]. Carbon, 2018, 139: 1020-1026.

[50] ZHANG Y, SANVITO S. Interface engineering of graphene nanosheet reinforced ZrB2 composites by tuning surface contacts[J]. Phys Rev Mater, 2019, 3(7): 073604.

[51] ASL M S, NAYEBI B, MOTALLEBZADEH A, et al. Nanoindentation and nanostructural characterization of ZrB2-SiC composite doped with graphite nano-flakes[J]. Compos Part B Eng, 2019, 175: 107153.

[52] NGUYEN T P, PAZHOUHANFAR Y, DELBARI S A, et al. Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets[J]. Ceram Int, 2020, 46(11): 18742-18749.

[53] KOVAL?倢

[54] AKIN I, KAYA O. Microstructures and properties of silicon carbide-and graphene nanoplatelet-reinforced titanium diboride composites[J]. J Alloy Compd, 2017, 729: 949-959.

[55] OCAK B C, YAVAS B, AKIN I, et al. Spark plasma sintered ZrC-TiC-GNP composites: Solid solution formation and mechanical properties[J]. Ceram Int, 2018, 44(2): 2336-2344.

[56] AN Y, HAN J, ZHANG X, et al. Bioinspired high toughness graphene/ZrB2 hybrid composites with hierarchical architectures spanning several length scales[J]. Carbon, 2016, 107: 209-216.

[57] ZHANG B, ZHANG X, HONG C, et al. Electrostatic assembly preparation of high-toughness zirconium diboride-based ceramic composites with enhanced thermal shock resistance performance[J]. ACS Appl Mater Interfaces, 2016, 8(18): 11675-11681.

[58] CHENG Y, HU P, ZHOU S, et al. Using macroporous graphene networks to toughen ZrC-SiC ceramic[J]. J Eur Ceram Soc, 2018, 38(11): 3752-3758.

[59] CHENG Y, LYU Y, HAN W, et al. Multiscale toughening of ZrB2-SiC-graphene@ ZrB2-SiC dual composite ceramics[J]. J Am Ceram Soc, 2019, 102(4): 2041-2052.

[60] CHENG Y, LYU Y, ZHOU S, et al. Non-axially aligned ZrB2-SiC/ZrB2-SiC-graphene short fibrous monolithic ceramics with isotropic in-plane properties[J]. Ceram Int, 2019, 45(3): 4113-4118.

[61] CHENG Y, AN Y, LIU Y, et al. ZrB2-based “brick-and-mortar” composites achieving the synergy of superior damage tolerance and ablation resistance[J]. ACS Appl Mater Interfaces, 2020, 12(29): 33246-33255.

[62] BAI Y, ZHANG B, DU H, et al. Efficient multiscale strategy for toughening HfB2 ceramics: A heterogeneous ceramic-metal layered architecture[J]. J Am Ceram Soc, 2021, 104(4): 1841-1851.

[63] KUN P, TAPASZTO O, WEBER F, BALAZSI C. Determination and mechanical properties of multilayer graphene added silicon nitride-based composites[J]. Ceram Int, 2012, 38: 211-216.

[64] 张宝玺. ZrB2基超高温陶瓷复合材料的微结构调控及热冲击行 为研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

[65] SIMONENKO E P, SIMONENKO N P, KOLESNIKOV A F, et al. Modification of HfB2-30% SiC UHTC with graphene (1 vol%) and its influence on the behavior in a supersonic air jet[J]. Russ J Inorg Chem, 2021, 66(9): 1405-1415.

[66] CHENG Y, LIU Y, AN Y, et al. High thermal-conductivity rGO/ZrB2-SiC ceramics consolidated from ZrB2-SiC particles decorated GO hybrid foam with enhanced thermal shock resistance[J]. J Eur Ceram Soc, 2020, 40(8): 2760-2767.

[67] VAJDI M, MOGHANLOU F S, NEKAHI S, et al. Role of graphene nano-platelets on thermal conductivity and microstructure of TiB2-SiC ceramics[J]. Ceram Int, 2020, 46(13): 21775-21783.

[68] WANG A, LIAO H, ZHANG T, et al. Study on the effect of sample shapes on the thermal shock behavior of ZrB2-SiC-graphite sharp leading edge[J]. Int J Ceram Eng Sci, 2020, 2(2): 101-109.

[69] NIETO A, KUMAR A, LAHIRI D, et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow[J]. Carbon, 2014, 67: 398-408.

[70] AKARSU M K, AKIN I. Mechanical properties and oxidation behavior of spark plasma sintered (Zr, Ti)B2 ceramics with graphene nanoplatelets[J]. Ceram Int, 2020, 46(16): 26109-26120.

[71] CHENG Y, HU Y, HAN W, et al. Microstructure, mechanical behavior and oxidation resistance of disorderly assembled ZrB2-based short fibrous monolithic ceramics[J]. J Eur Ceram Soc, 2019, 39(9): 2794-2804.

[72] NGUYEN V H, DELBARI S A, ASL M S, et al. Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics[J]. Ceram Int, 2021, 47(9): 12459-12466.

[73] SIMONENKO E P, SIMONENKO N P, KOLESNIKOV A F, et al. Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow[J]. J Eur Ceram Soc, 2022, 42(1): 30-42

邢悦, 孙川, 何鹏飞, 胡振峰, 任素娥, 梁秀兵. 石墨烯/超高温陶瓷复合材料研究进展[J]. 硅酸盐学报, 2022, 50(10): 2734. XING Yue, SUN Chuan, HE Pengfei, HU Zhenfeng, REN Su'e, LIANG Xiubing. Research Progress on Graphene/Ultra-High Temperature Ceramic Composites[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2734.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!