人工晶体学报, 2023, 52 (2): 183, 网络出版: 2023-03-18  

基于钠助熔剂法的GaN单晶生长研究进展

Research Progress on the Growth of GaN Single Crystal by Sodium Flux Method
作者单位
1 山东大学晶体材料国家重点实验室,新一代半导体材料研究院,济南 250100
2 齐鲁工业大学(山东省科学院),材料科学与工程学院,济南 250353
摘要
宽禁带氮化镓(GaN)材料以其独特的性质和应用前景成为国内外研究的热点,高质量GaN单晶衬底的制备是获得性能优异的光电子器件和功率器件的基础。钠助熔剂法生长条件温和,易获得高质量、大尺寸的GaN单晶,是一种具有广阔商业化前景的GaN单晶生长方法。钠助熔剂法自20世纪90年代末期被发明以来,经过20多年的发展,钠助熔剂法生长的晶体在尺寸与质量上都取得了长足的进步。本文从晶体生长原理和关键工艺(籽晶选择、温度梯度以及添加剂)等方面综述了钠助熔剂法生长GaN单晶研究进展,并对其面临的挑战和未来发展趋势进行了展望。
Abstract
Gallium nitride (GaN) material has become a research hotspot at home and abroad because of its unique properties and application prospects. High quality GaN single crystals are the prerequisite for obtaining optoelectronic devices and power devices with excellent performance. Because of its mild growth conditions, the sodium flux method is easy to obtain high quality and large size GaN single crystals, and it is a promising method for the growth of GaN single crystals. Since the sodium flux method was invented in the late 1990s, the crystals grown by the sodium flux method have made considerable progress in size and quality after more than 20 years of development. Recent research progress of GaN single crystals grown by the sodium flux method from the aspects of crystal growth principle, seed crystal selection, temperature gradient and additives are summarized in this paper, and the challenges and future development trend are also prospected.
参考文献

[1] PEARTON S J, REN F, ZHANG A P, et al. Fabrication and performance of GaN electronic devices[J]. Materials Science and Engineering: R: Reports, 2000, 30(3/4/5/6): 55-212.

[2] EFTHYMIOU L, LONGOBARDI G, CAMUSO G, et al. On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices[J]. Applied Physics Letters, 2017, 110(12): 123502.

[3] ANDERSON T J, CHOWDHURY S, AKTAS O, et al. GaN power devices-current status and future directions[J]. The Electrochemical Society Interface, 2018, 27(4): 43-47.

[4] NAKAMURA S. First Ⅲ-Ⅴ-nitride-based violet laser diodes[J]. Journal of Crystal Growth, 1997, 170(1/2/3/4): 11-15.

[5] JOHNSON M A L, HUGHES W C, ROWLAND W H Jr, et al. Growth of GaN, InGaN, and AlGaN films and quantum well structures by molecular beam epitaxy[J]. Journal of Crystal Growth, 1997, 175/176: 72-78.

[6] MELTON W A, PANKOVE J I. GaN growth on sapphire[J]. Journal of Crystal Growth, 1997, 178(1/2): 168-173.

[7] DUPUIS R D. Epitaxial growth of Ⅲ-Ⅴ nitride semiconductors by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 1997, 178(1/2): 56-73.

[8] NAKAMURA S, MUKAI T, SENOH M. High-power GaN P-N junction blue-light-emitting diodes[J]. Japanese Journal of Applied Physics, 1991, 30(12A): L1998.

[9] IWAYA M, KASUGAI H, KAWASHIMA T, et al. Improvement in light extraction efficiency in group Ⅲ nitride-based light-emitting diodes using moth-eye structure[J]. Thin Solid Films, 2006, 515(2): 768-770.

[10] SAITO W, DOMON T, OMURA I, et al. Demonstration of 13.56-MHz class-E amplifier using a high-voltage GaN power-HEMT[J]. IEEE Electron Device Letters, 2006, 27(5): 326-328.

[11] BOCKOWSKI M. High nitrogen pressure solution growth of GaN[J]. Japanese Journal of Applied Physics, 2014, 53(10): 100203.

[12] 任国强, 王建峰, 刘宗亮, 等. 氮化镓单晶生长研究进展[J]. 人工晶体学报, 2019, 48(9): 1588-1598.

[13] KAWAMURA F, MORISHITA M, TANPO M, et al. Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method[J]. Journal of Crystal Growth, 2008, 310(17): 3946-3949.

[14] 任国强, 刘宗亮, 李腾坤, 等. 氮化镓单晶的液相生长[J]. 人工晶体学报, 2020, 49(11): 2024-2037.

[15] YAMANE H, KINNO D, SHIMADA M, et al. GaN single crystal growth from a Na-Ga melt[J]. Journal of Materials Science, 2000, 35(4): 801-808.

[16] YAMANE H, KINNO D, SHIMADA M, et al. Crystal growth of GaN from Na-Ga melt in BN containers[J]. Journal of the Ceramic Society of Japan, 1999, 107(1250): 925-929.

[17] AOKI M, YAMANE H, SHIMADA M, et al. Growth of GaN single crystals from a Na-Ga melt at 750 ℃ and 5 MPa of N2[J]. Journal of Crystal Growth, 2000, 218(1): 7-12.

[18] AOKI M, YAMANE H, SHIMADA M, et al. GaN single crystal growth using high-purity Na as a flux[J]. Journal of Crystal Growth, 2002, 242(1/2): 70-76.

[19] IWAHASHI T, KITAOKA Y, KAWAMURA F, et al. Liquid phase epitaxy growth of m-plane GaN substrate using the Na flux method[J]. Japanese Journal of Applied Physics, 2007, 46(10): L227-L229.

[20] AOKI M, YAMANE H, SHIMADA M, et al. Conditions for seeded growth of GaN crystals by the Na flux method[J]. Materials Letters, 2002, 56(5): 660-664.

[21] SI Z W, LIU Z L, HU Y Q, et al. Growth behavior and stress distribution of bulk GaN grown by Na-flux with HVPE GaN seed under near-thermodynamic equilibrium[J]. Applied Surface Science, 2022, 578: 152073.

[22] 守山実希, 藤森 拓, 浅見慎也, 等. 第三世代Naフラックス法を用いたパワーデバイス用6インチ GaN基板の開発[J]. 豊田合成技報, 2022, 62: 31-38.

[23] LIU Z L, REN G Q, SHI L, et al. Effect of carbon types on the generation and morphology of GaN polycrystals grown using the Na flux method[J]. CrystEngComm, 2015, 17(5): 1030-1036.

[24] MASUMOTO K, SOMENO T, MURAKAMI K, et al. Effect of additives on liquid phase epitaxy growth of non-polar GaN single crystals using Na flux method[J]. Physica Status Solidi C, 2012, 9(3/4): 457-460.

[25] IWAHASHI T, KITAOKA Y, KAWAHARA M, et al. Fabrication of a-plane GaN substrate using the Sr-Na flux liquid phase epitaxy technique[J]. Japanese Journal of Applied Physics, 2007, 46(4): L103-L106.

[26] BAO H Q, LI H, WANG G, et al. Exploration of Ba3N2 flux for GaN single-crystal growth[J]. Journal of Crystal Growth, 2008, 310(12): 2955-2959.

[27] AOKI M, YAMANE H, SHIMADA M, et al. Single crystal growth of GaN by the temperature gradient Na flux method[J]. Journal of Crystal Growth, 2004, 266(4): 461-466.

[28] GEJO R, KAWAMURA F, KAWAHARA M, et al. Effect of thermal convection on liquid phase epitaxy of GaN by Na flux method[J]. Japanese Journal of Applied Physics, 2007, 46(12): 7689-7692.

[29] IMADE M, MURAKAMI K, MATSUO D, et al. Centimeter-sized bulk GaN single crystals grown by the Na-flux method with a necking technique[J]. Crystal Growth & Design, 2012, 12(7): 3799-3805.

[30] IMADE M, IMANISHI M, TODOROKI Y, et al. Fabrication of low-curvature 2 in. GaN wafers by Na-flux coalescence growth technique[J]. Applied Physics Express, 2014, 7(3): 035503.

[31] MORI Y, IMANISHI M, MURAKAMI K, et al. Recent progress of Na-flux method for GaN crystal growth[J]. Japanese Journal of Applied Physics, 2019, 58(SC): SC0803.

[32] YAMADA T, IMANISHI M, MURAKAMI K, et al. Fabrication of a 1.5-inch freestanding GaN substrate by selective dissolution of sapphire using Li after the Na-flux growth[J]. Journal of Crystal Growth, 2020, 533: 125462.

王本发, 王守志, 王国栋, 俞娇仙, 刘磊, 李秋波, 武玉珠, 徐现刚, 张雷. 基于钠助熔剂法的GaN单晶生长研究进展[J]. 人工晶体学报, 2023, 52(2): 183. WANG Benfa, WANG Shouzhi, WANG Guodong, YU Jiaoxian, LIU Lei, LI Qiubo, WU Yuzhu, XU Xiangang, ZHANG Lei. Research Progress on the Growth of GaN Single Crystal by Sodium Flux Method[J]. Journal of Synthetic Crystals, 2023, 52(2): 183.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!