石爽爽 1,2,*师瑞泽 1,2王国影 1,2肖亚波 1,2[ ... ]陈建荣 1,2
作者单位
摘要
1 北京中材人工晶体研究院有限公司,北京100018
2 中材人工晶体研究院有限公司,北京100018
磷酸氧钛铷(RbTiOPO4, 简称RTP)是综合性能优异的电光晶体,具有电光系数高、半波电压低、激光损伤阈值高、器件小巧、环境适应性强等优点,已成为新一代电光器件应用材料,非常适合用作电光开关、电光调制器等。激光系统的发展迫切需求更高功率、更高重复频率和更窄脉宽激光用高性能电光晶体,基于此,本文选用富Rb的高[Rb]/[P]摩尔比值生长体系,通过顶部籽晶熔盐法生长出高质量RTP晶体,测试了晶体或器件的光学均匀性、重复频率、插入损耗、消光比和抗激光损伤阈值,结果表明,该晶体的光学均匀性为7.3×10-6 cm-1,重复频率为501 kHz,插入损耗为0.49%,消光比为31.57 dB,激光损伤阈值为856 MW/cm2。
电光晶体 顶部籽晶熔盐法 光学均匀性 激光损伤阈值 RTP RTP electrooptical crystal top seeded solution growth method optical homogeneity laser damage threshold 
人工晶体学报
2023, 52(12): 2151
作者单位
摘要
1 中材人工晶体研究院有限公司,北京100018
2 北京中材人工晶体研究院有限公司,北京100018
CsLiB6O10(简称CLBO)是一种性能优良的紫外非线性光学晶体,特别适用于四倍频(266 nm)和五倍频(210 nm)的紫外大功率激光。本文采用顶部籽晶法成功生长出尺寸为120 mm×112 mm×62 mm的CLBO晶体,晶体外观完整,无开裂、散射等宏观缺陷。由该晶体切出五倍频CLBO晶体元件,对其进行了紫外可见近红外透过率、光学均匀性、弱吸收性能表征,结果显示,210~1 800 nm的平均透过率超过90%,光学均匀性为3.8×10-5,1 064 nm弱吸收为90×10-6 cm-1,表明该晶体紫外区透过率良好,光学均匀性高,弱吸收低,为后续相关激光应用研究奠定了基础。
非线性光学晶体 顶部籽晶 透过率 光学均匀性 弱吸收 CsLiB6O10 CsLiB6O10 nonlinear optical crystal top seeded solution growth method transmittance optical uniformity weak absorption 
人工晶体学报
2023, 52(12): 2146
刘青雄 1,2,*王天予 1,2刘孚安 3吴倩 1[ ... ]夏明军 1
作者单位
摘要
1 中国科学院理化技术研究所人工晶体研究发展中心,北京 100190
2 中国科学院大学未来技术学院,北京 100049
3 山东大学晶体材料国家重点实验室&晶体材料研究院,济南 250100
4 南京航天航空大学航天学院,南京 211106
采用顶部籽晶溶液生长法成功生长出尺寸为42 mm×20 mm×18 mm的高光学质量的紫外非线性光学晶体K3B6O10Br(KBB)。根据其结构对称性要求,将KBB晶体定向加工成不同的器件切型,系统表征其光电性能。对KBB晶体电弹常数进行了系统的表征,受微观结构影响,压电常数各向异性较大,最大的压电常数d33=6.69 pC/N。KBB晶体具有良好的激光频率变换、电光及压电性能,在光电子领域显示出潜在的应用前景。
紫外非线性光学晶体 顶部籽晶溶液生长法 晶体生长 电光系数 压电性能 ultraviolet nonlinear optical crystal K3B6O10Br K3B6O10Br top-seeded solution growth method crystal growth electro-optical coefficient piezoelectric property 
人工晶体学报
2023, 52(7): 1296
作者单位
摘要
1 清华大学航天航空学院, 北京 100084
2 清华大学工程物理系, 北京 100084
本文针对光伏太阳能用准单晶硅铸锭系统的硅料熔化过程进行了数值模拟研究, 尤其是孔隙率阶跃分布的堆积硅料熔化过程对籽晶熔化的影响。研究结果表明: 堆积硅料孔隙率呈轴向阶跃分布有利于降低籽晶的熔化比例; 籽晶的熔化界面形状主要受下层孔隙率影响, 在特定的平均孔隙率范围内, 上下两层孔隙率差异较小时, 孔隙率的轴向阶跃分布对籽晶的熔化界面形状影响较小; 当籽晶的熔化比例相近时, 平均孔隙率越小, 籽晶的熔化界面形状越平缓, 越有利于籽晶边缘区域的保留; 当平均孔隙率一定时, 下层孔隙率越小越有利于籽晶边缘区域的保留。堆积硅料区域孔隙率呈径向阶跃分布会使籽晶的熔化界面形状发生畸变, 内层孔隙率的逐渐增大会使籽晶的熔化界面形状由“凸”逐渐转变为“凹”, 外层孔隙率不大于内层孔隙率时籽晶可以得到有效保留; 内外两层孔隙率差值越小, 籽晶的熔化比例越小。籽晶的熔化比例分布在不同轴向阶跃分布孔隙率下呈现一定的中心对称性, 而在不同径向阶跃分布孔隙率下呈现一定的周期性, 孔隙率均匀分布时的籽晶熔化界面形状优于其他情况。在实际工况条件下, 可以根据由不同孔隙率分布条件下获取的籽晶熔化状态数据绘制的等值线图对堆积硅料区域的孔隙率分布进行合理配置。
准单晶硅铸锭 阶跃分布孔隙率 籽晶熔化 堆积硅料 界面形状 熔化状态 quasi-single crystalline silicon casting step porosity distribution seed crystal melting stacked silicon interface shape melting state 
人工晶体学报
2023, 52(10): 1745
武鹏程 1,2,*张君 3张立松 1,2徐明霞 1,2[ ... ]孙洵 1,2
作者单位
摘要
1 山东大学晶体材料研究院,济南 250100
2 晶体材料国家重点实验室,济南 250100
3 中国工程物理研究院激光聚变研究中心,四川 绵阳 621000
高功率激光系统的发展对大尺寸、高性能磷酸二氘钾(DKDP)类晶体的需求越来越大。快速生长法较传统法可大幅缩短晶体生长周期,提高晶体生长效率。但是快速生长DKDP晶体锥面区和柱面区性能存在差异,导致不同位置的性能存在不均匀性,限制其在高功率激光系统中的应用。通过合成晶体生长溶液,采用点籽晶快速生长法生长了中等口径的高氘DKDP晶体,使用透过光谱,从线性吸收角度分析了快长DKDP晶体用作电光开关和频率转换器的可行性。结合Raman光谱技术及摇摆曲线的测试方法分析了晶体氘含量和结晶质量均匀性,为大尺寸DKDP的生长和应用提供参考。
籽晶 磷酸二氘钾晶体 氘含量 透过率 摇摆曲线 point seeding method potassium dideuterium phosphate crystals deuterium content transmittance rocking curve 
硅酸盐学报
2023, 51(6): 1548
隋占仁 1,2,*徐凌波 1,2崔灿 1王蓉 2,3[ ... ]韩学峰 2,3
作者单位
摘要
1 浙江理工大学物理系,浙江省光场调控技术重点实验室,杭州 310018
2 浙江大学杭州国际科创中心, 浙江省宽禁带半导体重点实验室, 杭州 311200
3 浙江大学材料科学与工程学院, 硅材料国家重点实验室, 杭州 310027
宽禁带半导体材料碳化硅(SiC)凭借着其高击穿场强、高热导率、耐高温、高化学稳定性和抗辐射等优异性能, 在电力电子器件领域尤其是高温、高频、高功率等应用场景下有着巨大潜力。大尺寸、高质量、低成本的单晶SiC的制备是SiC相关半导体产品规模化应用的前提。顶部籽晶溶液生长(TSSG)法生长的单晶SiC有着晶体质量高、易扩径、易p型掺杂等优势, 有望成为制备单晶SiC的主流方法。但目前由于该方法涉及的生长机理复杂, 研究者对其内部机理的理解还不够充分, 难以对TSSG生长设备和方法进行有效的改进与优化。利用计算机对TSSG法生长单晶SiC生长过程进行数值模拟被认为是对其内部机理探究的有效途径之一。本文首先回顾了TSSG法生长单晶SiC和相关数值模拟分析的发展历程, 介绍了TSSG法生长单晶SiC和数值模拟的基本原理, 然后介绍了数值模拟方法计算分析TSSG法生长单晶SiC模型涉及的主要模块、影响单晶生长的主要因素(如马兰戈尼力、浮力、电磁力等), 以及对数值模型的优化方法。最后, 指出了数值模拟方法计算分析TSSG法生长单晶SiC在未来的重点研究方向。
宽禁带半导体 碳化硅 顶部籽晶溶液生长法 数值模拟 有限元 晶体生长 机器学习 wide bandgap semiconductor silicon carbide top-seeded solution growth numerical simulation finite element crystal growth machine learning 
人工晶体学报
2023, 52(6): 1067
作者单位
摘要
1 山东大学晶体材料国家重点实验室,新一代半导体材料研究院,济南 250100
2 齐鲁工业大学(山东省科学院),材料科学与工程学院,济南 250353
宽禁带氮化镓(GaN)材料以其独特的性质和应用前景成为国内外研究的热点,高质量GaN单晶衬底的制备是获得性能优异的光电子器件和功率器件的基础。钠助熔剂法生长条件温和,易获得高质量、大尺寸的GaN单晶,是一种具有广阔商业化前景的GaN单晶生长方法。钠助熔剂法自20世纪90年代末期被发明以来,经过20多年的发展,钠助熔剂法生长的晶体在尺寸与质量上都取得了长足的进步。本文从晶体生长原理和关键工艺(籽晶选择、温度梯度以及添加剂)等方面综述了钠助熔剂法生长GaN单晶研究进展,并对其面临的挑战和未来发展趋势进行了展望。
氮化镓单晶 钠助熔剂法 原料比 温度梯度 添加剂 籽晶 gallium nitride single crystal sodium flux method raw material ratio temperature gradient additive seed crystal 
人工晶体学报
2023, 52(2): 183
作者单位
摘要
1 1.中国科学院 福建物质结构研究所, 福州 350002
2 2.电子科技大学 电子科学与工程学院, 成都 610054
3 3.西南应用磁学研究所, 绵阳 621000
钇铁石榴石(Y3Fe5O12, YIG)晶体具有优异的磁学和磁光性质, 在微波和磁光器件中有着广泛的应用。目前商用的磁光材料是采用液相外延技术在Gd3Ga5O12(GGG)衬底上沉积的YIG单晶薄膜。本研究以无铅B2O3-BaF2为复合助熔剂, 采用顶部籽晶法技术(TSSG)生长YIG单晶材料, YIG晶体尺寸和重量分别可达43 mm×46 mm×11 mm和60 g。该晶体具有较窄的铁磁共振线宽(0.679 Oe)、高透明度(75%)和法拉第旋转角(200 (°)·cm-1@1310 nm, 160 (°)·cm-1@1550 nm)等优异的综合性能, 是微波和磁光器件的良好候选材料。更为重要的是, 这种生长技术非常适合大尺寸YIG单晶或稀土掺杂YIG单晶, 结合定向籽晶生长和提升工艺, 可以显著降低生产成本。
钇铁石榴石 单晶 顶部籽晶 铁磁共振线宽 磁光效应 yttrium iron garnet single crystal TSSG method ferromagnetic resonance linewidth magneto-optic effect 
无机材料学报
2022, 38(3): 322
作者单位
摘要
1 福州大学化学学院,福州350116
2 中国科学院福建物质结构研究所,福州350002
受到晶体尺寸以及非线性光学性能的影响,目前可供选择的非线性晶体非常有限。DKDP晶体作为传统大尺寸光电材料,在光参量啁啾脉冲放大(OPCPA)装置中得到了应用。高氘化的DKDP晶体有更好的光学性能,然而生长出高氘化DKDP晶体对生长环境等有更加严格的要求。本文通过改良的原料合成罐以及生长槽,采用点籽晶快速生长法成功生长出高氘DKDP晶体。按照Ⅰ类(θ=37.23°, φ=45°)切割方式制备样品,并对其氘含量、透过率、光学均匀性以及晶体激光损伤阈值进行测试。实验结果表明,晶体的平均氘含量达到98.49%,在可见近红外波段下具有较宽的透过波段和较高的透过性能。Ron1的测试结果显示,在3 ns、527 nm条件下,DKDP晶体的激光损伤阈值达到了19.92 J/cm2。晶体光学均匀性均方根达到了1.833×10-9,表明晶体具有良好的光学均匀性。
非线性晶体 高氘 籽晶快速生长法 光学性能 Ⅰ类 DKDP DKDP nonlinear crystal OPCPA OPCPA highly deuterium rapid growth of point seed crystal optical property type I 
人工晶体学报
2022, 51(12): 2009
作者单位
摘要
桂林电子科技大学材料科学与工程学院,广西信息材料重点实验室,广西 桂林 541004
采用无籽晶固相法制备Ta2O5、MnO2掺杂的99.7K0.5Na0.5[Nb(1-x)Tax]O3-0.3BaBiO3无铅压电单晶,研究了Ta、Mn单掺杂和共掺杂对晶体生长、结构和性能的影响。结果表明:适量Ta和Mn共掺杂有利于晶体生长,当加入0.9%(摩尔分数)Ta和0.1% Mn时,单晶表面更为规则和致密,所获晶体最大尺寸可达30.0 mm×9.2 mm×2.6 mm。当固定0.1% Mn掺杂并改变Ta的掺杂量时,Ta掺杂量较高的单晶具有相对高的压电性能;当Ta和Mn分别掺杂为0.9%和0.1%时,所得单晶具有较高的剩余极化强度Pr和压电常数d33,分别为26.96 μC/cm2和227 pC/N。
籽晶固相法 铌酸钾钠 压电单晶 钽掺杂 锰掺杂 seed-free solid-state crystal growth method potassium sodium niobate piezoelectric single crystal tantalum pentoxide doping manganese dioxide doping 
硅酸盐学报
2022, 50(9): 2358

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!