压电与声光, 2023, 45 (6): 866, 网络出版: 2024-01-04  

压电陶瓷定位平台的复合控制系统研究

Study on Composite Control System for Piezoelectric Ceramic Positioning Platform
作者单位
山东理工大学 机械工程学院,山东 淄博 255049
摘要
针对因压电陶瓷固有的迟滞特性降低了压电陶瓷平台定位精度问题,该文提出一种基于前馈补偿的复合控制系统。首先建立前馈模型,提出并应用一种分段式的Prandtl-Ishlinskii模型,增加拟合精度,同时避免了复杂的求解过程,并求出迟滞逆模型,其建模误差率可达0.69%; 其次,对反馈回路设计了串联比例-积分(PI)数字电路、正弦激励电路及电容转换电路,进一步提高了压电陶瓷定位平台的控制精度。根据国标GB/T 38614—2020的测试标准进行实验测试,结果表明,在设计的复合控制系统控制下,压电陶瓷定位平台正、反向重复定位精度分别为0.013 1 μm和0.015 5 μm,准确度为0.033 5 μm,在计算出反向差值后得出迟滞误差为0.013%。与仅有前馈控制相比,其控制精度提高了79.57%。
Abstract
A composite control system based on feedforward compensation is proposed to address the issue of reducing the accuracy of piezoelectric ceramic positioning platforms due to the inherent hysteresis characteristics of piezoelectric ceramics. Firstly, a feedforward model is established. A segmented Prandtl Ishlinskii model is proposed and applied to increase the fitting accuracy while avoiding complex solving processes,and a hysteresis inverse model with a modeling error rate of up to 0.69% is obtained. Secondly,a series proportional integral (PI) digital circuit,a sinusoidal excitation circuit,and a capacitor conversion circuit were designed for the feedback loop,further improving the control accuracy of the piezoelectric ceramic positioning platform. The test is carried out according to the national test standard GB/T 38614-2020.The measurement results show that the forward repetitive positioning accuracy and reverse repetitive positioning accuracy of the piezoelectric ceramic positioning platform are 0.013 1 μm and 0.015 5 μm,respectively, and the accuracy of the platform is 0.033 5 μm under the control of the designed composite control system. After calculating the reverse difference,the hysteresis error is 0.013%.Compared with the piezoelectric ceramic positioning platform with only feedforward control,the control accuracy has improved by 79.57%.
参考文献

[1] 于志亮,刘杨,王岩,等.基于改进PI模型的压电陶瓷迟滞特性补偿控制[J].仪器仪表学报,2017,38(1):129-135.

[2] 孙翰,时运来,孙海超,等.基于PA41的压电叠堆驱动电源设计[J].压电与声光,2022,44(1):68-72.

[3] 李自成,熊轩,王后能,等.压电陶瓷驱动器的复合控制方法研究[J].机械设计与制造,2023,384(2):11-14.

[4] 李宇阳,朱玉川,李仁强,等.双压电叠堆驱动执行器率相关迟滞建模与分析[J].压电与声光,2019,41(2):258-264.

[5] LEANDRO B.Structural electroactive cermets:dielectric and structural properties of conductive metallic reinforced piezoelectric ceramics[J]. Critical Reviews in Solid State and Materials Sciences, 2021,46(1):38-81.

[6] 王晓东,江国栋.压电陶瓷迟滞建模及控制仿真[J].压电与声光,2015,37(6):926-929.

[7] 王舟,陈远晟,王浩,等.压电陶瓷驱动器迟滞建模与自适应控制[J].压电与声光,2020,42(4):523-528.

[8] 蔡永根,沈忠良,肖国华,等.多层压电执行器输出位移的模糊神经元PID控制[J].压电与声光,2021,43(6):850-856.

[9] 江国栋,王晓东.基于PI逆模型的压电执行器复合控制 [J].压电与声光,2016,38(4):553-557.

[10] 赵广义,王伟国,李博, 等.压电陶瓷迟滞逆模型的前馈PID控制[J].压电与声光,2014,36(6):914-916.

[11] 李致富,黄楠,钟云,等.压电驱动器迟滞非线性的分数阶建模及实验验证[J].光学精密工程,2020,28(5):1124-1131.

[12] CHEN X,SU C Y,LI Z,et al.Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator[J].IEEE Transactions on Industrial Electronics,2016,63(10):6471-6481.

[13] RAKOTONDRABE M.Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J].IEEE Transactions on Automation Science Engineering,2011,8(2):428-431.

[14] 黄涛,罗治洪,陶桂宝,等.压电定位平台Hammerstein建模与反馈线性化控制[J].光学精密工程,2022,30(14):1716-1724.

[15] WEN Y K.Method for random vibration of hysteretic system[J].Journal of the Engineering Mechanics Division,1976,102(2):249-263.

[16] 周民瑞,周振华,刘鑫,等.压电执行器改进Bouc-Wen模型及其定位补偿控制研究[J].振动与冲击,2023,42(10):155-164.

[17] GUO Pengjun,ZHANG Jingzhou,YANG Yuanfan,et al.Study on wireless communication network architecture and access control algorithm in aircraft[J].Computer Science,2022,49(9):268-274.

姜佩岑, 刘曰涛, 于长松, 温尚林. 压电陶瓷定位平台的复合控制系统研究[J]. 压电与声光, 2023, 45(6): 866. 姜佩岑, 刘曰涛, 于长松, 温尚林. Study on Composite Control System for Piezoelectric Ceramic Positioning Platform[J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 866.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!