光谱学与光谱分析, 2023, 43 (8): 2507, 网络出版: 2024-01-10  

气动悬浮无容器激光加热技术的应用: MgTi2O5晶体及其熔体微结构的原位超高温拉曼光谱研究

Application of Aerodynamic Levitator Laser Heating Technique: Microstructures of MgTi2O5Crystal and Melt by in-situ Superhigh Temperature Raman Spectroscopy
作者单位
1 省部共建高品质特殊钢冶金与制备国家重点实验室、 上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院, 上海 200444
2 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
摘要
搭建气体动力学悬浮无容器激光加热装置耦合皮秒级时间门控拉曼光谱仪, 突破常规加热法的温度与坩埚材料的限制的同时, 依靠皮秒级脉冲激光极短的测量周期大幅度屏蔽高温极端条件下黑体辐射对拉曼信号的干扰。 并利用该平台首次原位测定了高熔点MgTi2O5超高温下(1 903、 1 953和2 003 K)的高信噪比熔体拉曼光谱。 并通过耦合三代增强型电荷耦合探测器(ICCD)与纳秒级脉冲激光实现测定MgTi2O5晶体样品室温(RT)到1 673 K的完整温度范围的原位拉曼光谱。 在RT升至1 953 K的升温过程中晶体的拉曼光谱出现展宽和红移现象, 相对强度降低, 当温度升高到熔体(2 003 K)成为单一宽泛的包络线, 表明此时晶体的长程有序的结构已经被破坏, 体系内微结构发生本质改变。 运用密度泛函理论(DFT)计算其常温拉曼光谱, 比照实验光谱, 对主要振动模式进行了归属分析, 拉曼光谱位移低于350 cm-1的低波数区的振动主要归属于晶体的晶格振动, 中波数区域485 cm-1的振动峰为Ti—O—Ti弯曲振动, 主要特征峰648 cm-1处为TiO6八面体内O—Ti伸缩振动; 787 cm-1处为TiO6八面体内O—Ti—O的弯曲振动。 对熔体结构运用量子化学从头计算法, 模拟了系列团簇模型的拉曼光谱, 获得了特征振动模式的波数和散射截面, 实验拉曼光谱采用散射截面校正后, 解谱并定量分析了熔体中团簇结构的分布。 定量分析显示, MgTi2O5晶体熔化后, 存在TiO4四面体构型(不同构型的Qi相对摩尔分数分别为54.6%Q0、 20.1%Q1、 5.0%Q2、 4.8%Q3, Qi为不同桥氧数i的钛氧四面体)和TiO6八面体构型(H0的相对摩尔分数为14.8%, H0为孤立的六配位钛氧八面体)。 Ti4+主要以孤立四面体结构Q0、 二聚体结构Q1四配位形式存在, 少部分以孤立的钛氧八面体H0六配位的形式存在。 结果表明: MgTi2O5熔体成分中占较大比例的孤立结构, 破坏了体系网络连接性, 抑制了玻璃形成能力, 因此该高温熔体不具备形成玻璃的条件。 在升温过程中MgTi2O5晶体的拉曼光谱显示无相变发生; 熔融过程中, 晶体微结构中的Ti—O多面体结构由单一TiO6型转变为TiO4与TiO6型共存。
Abstract
The aerodynamic levitator laser (ADL) heating device coupled with picosecond time-gate Raman spectrometer was built. It breaks through the limitation of temperature and crucible material of conventional heating method. It greatly shields the interference of blackbody radiation on Raman signal under high temperature and extreme conditions by relying on the extremely short measurement cycle of picosecond pulsed laser. In-situ Raman spectra of MgTi2O5 melt with high melting points at superhigh temperatures (1 903, 1 953, 2 003 K) were measured for the first time. In-situ temperature-dependent Raman spectra of MgTi2O5 crystal before melting (1 673 K) were measured by coupling the third-generation intensified charge-coupled device (ICCD) detector and nanosecond pulsed laser. Raman spectra of the crystal broaden and redshift with increasing temperature from room temperature (RT) to 1 953 K, and the relative intensity decreases. A single broad envelop was observed when the temperature was increased to the melt (2 003 K). Indicating that the long-range ordered structure of the crystal has been destroyed and the microstructures in the system have changed essentially. The Raman spectrum of MgTi2O5 crystal at RT was calculated by density functional theory (DFT), and major vibration modes were thus assigned by comparing the calculated spectrum with the experimental one. The vibration peaks in the low wavenumber region (<350 cm-1) can be mainly attributed to the external lattice vibration modes. The peak at 485 cm-1 in the medium wavenumber region corresponds to Ti—O—Ti bending vibration, and the main characteristic peak at 648 and 787 cm-1 stand for O—Ti stretching vibration and O—Ti—O bending vibration in the TiO6 octahedron, respectively. A series of cluster models assumed in melt were constructed and simulated by the quantum chemistry ab initio calculation method. The characteristic Raman active vibration wavenumbers and their scattering cross section were obtained. After the experimental Raman spectra of melt were corrected by scattering cross section, the deconvolution of the molten Raman spectra was carried out, and the concentration distribution of various species was thus described quantitatively. Results show that there are TiO4 tetrahedral clusters (The relative mole fractions of respective species Qi in different configurations are 54.6%Q0, 20.1%Q1, 5.0%Q2 and 4.8%Q3, and Qi is the titanium oxide tetrahedron with different bridge oxygen number i) and TiO6 octahedral clusters (Hexacoordinated titanium oxide octahedron, whose relative mole fraction is 14.8% H0) in MgTi2O5 melt. Ti4+ mainly exists in isolated tetrahedral structure Q0 and dimer structure Q1, and a small part exists in the form of isolated titanium oxide octahedral H0. The isolated structure accounts for most of the composition of MgTi2O5 melt, which destroys the systems network connectivity and inhibits the glass forming ability. No solid-solid phase transitions were observed for MgTi2O5 crystal with the increasing temperature before melting. Above the melting point, the Ti—O polyhedron in the crystal changes from a single TiO6 species to the coexistence of both TiO4 and TiO6 species.
参考文献

[1] Chen C, Sun T, Geng C, Kou J, et al. Mineral Processing and Extractive Metallurgy Review, 2019, 42(3): 162.

[2] Hiremath V, Shavi R, Seo J. Chemical Engineering Journal, 2017, 308: 177.

[3] Kornaus K, Rutkowski P, Lach R, et al. Journal of the European Ceramic Society, 2021, 41(2): 1498.

[4] Shindo I. Journal of Crystal Growth, 1980, 50(4): 839.

[5] Suzuki Y, Shinoda Y. Science and Technology of Advanced Materials, 2011, 12(3): 034301.

[6] Ramdohr P, El Goresey A. Science, 1970, 167(3918): 615.

[7] Grey I, Li C, Madsen I. Journal of Solid State Chemistry, 1994, 113(1): 62.

[8] Liermann H, Downs R, Yang H. American Mineralogist, 2006, 91(5): 790.

[9] He M, Winkler B, Bauer J. Journal of Alloys and Compounds, 2017, 699: 16.

[10] Sakka S, Miyaji F, Fukumi K. Journal of Non-Crystalline Solids, 1989, 112(1): 64.

[11] Mysen B, Neuville D. Geochimica et Cosmochimica Acta, 1995, 59(2): 325.

[12] Wang M, Simon P, Lu L M, et al. Analytical Chemistry, 2018, 90(15): 9085.

[13] Gong X Y, Wang J, You J L, et al. Ceramics International, 2022, 48(4): 4911.

[14] WU Jun, YOU Jing-lin, WANG Yuan-yuan, et al(伍 俊, 尤静林, 王媛媛, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(6): 1736.

[15] Wang J, You J L, Wang M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 185: 188.

[16] Keresztury G, Holly S, Besenyei G, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1993, 49: 2007.

[17] Luczynska K, Starosta W, Druzbicki K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 116: 646.

[18] You J L, Jiang G C, Hou H Y, et al. J Raman Spectrosc., 2005, 36: 237.

[19] Zachariasen W. Journal of the American Chemical Society, 1932, 54(10): 3841.

刘国鹏, 尤静林, 王建, 龚晓晔, 赵玉帆, 张庆礼, 万松明. 气动悬浮无容器激光加热技术的应用: MgTi2O5晶体及其熔体微结构的原位超高温拉曼光谱研究[J]. 光谱学与光谱分析, 2023, 43(8): 2507. LIU Guo-peng, YOU Jing-lin, WANG Jian, GONG Xiao-ye, ZHAO Yu-fan, ZHANG Qing-li, WAN Song-ming. Application of Aerodynamic Levitator Laser Heating Technique: Microstructures of MgTi2O5Crystal and Melt by in-situ Superhigh Temperature Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2507.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!