作者单位
摘要
1 省部共建高品质特殊钢冶金与制备国家重点实验室、 上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院, 上海 200444
2 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
搭建气体动力学悬浮无容器激光加热装置耦合皮秒级时间门控拉曼光谱仪, 突破常规加热法的温度与坩埚材料的限制的同时, 依靠皮秒级脉冲激光极短的测量周期大幅度屏蔽高温极端条件下黑体辐射对拉曼信号的干扰。 并利用该平台首次原位测定了高熔点MgTi2O5超高温下(1 903、 1 953和2 003 K)的高信噪比熔体拉曼光谱。 并通过耦合三代增强型电荷耦合探测器(ICCD)与纳秒级脉冲激光实现测定MgTi2O5晶体样品室温(RT)到1 673 K的完整温度范围的原位拉曼光谱。 在RT升至1 953 K的升温过程中晶体的拉曼光谱出现展宽和红移现象, 相对强度降低, 当温度升高到熔体(2 003 K)成为单一宽泛的包络线, 表明此时晶体的长程有序的结构已经被破坏, 体系内微结构发生本质改变。 运用密度泛函理论(DFT)计算其常温拉曼光谱, 比照实验光谱, 对主要振动模式进行了归属分析, 拉曼光谱位移低于350 cm-1的低波数区的振动主要归属于晶体的晶格振动, 中波数区域485 cm-1的振动峰为Ti—O—Ti弯曲振动, 主要特征峰648 cm-1处为TiO6八面体内O—Ti伸缩振动; 787 cm-1处为TiO6八面体内O—Ti—O的弯曲振动。 对熔体结构运用量子化学从头计算法, 模拟了系列团簇模型的拉曼光谱, 获得了特征振动模式的波数和散射截面, 实验拉曼光谱采用散射截面校正后, 解谱并定量分析了熔体中团簇结构的分布。 定量分析显示, MgTi2O5晶体熔化后, 存在TiO4四面体构型(不同构型的Qi相对摩尔分数分别为54.6%Q0、 20.1%Q1、 5.0%Q2、 4.8%Q3, Qi为不同桥氧数i的钛氧四面体)和TiO6八面体构型(H0的相对摩尔分数为14.8%, H0为孤立的六配位钛氧八面体)。 Ti4+主要以孤立四面体结构Q0、 二聚体结构Q1四配位形式存在, 少部分以孤立的钛氧八面体H0六配位的形式存在。 结果表明: MgTi2O5熔体成分中占较大比例的孤立结构, 破坏了体系网络连接性, 抑制了玻璃形成能力, 因此该高温熔体不具备形成玻璃的条件。 在升温过程中MgTi2O5晶体的拉曼光谱显示无相变发生; 熔融过程中, 晶体微结构中的Ti—O多面体结构由单一TiO6型转变为TiO4与TiO6型共存。
MgTi2O5晶体 超高温原位拉曼光谱 熔体结构 密度泛函理论 量子化学从头计算 MgTi2O5 crystal In situ high temperature Raman spectroscopy Melt micro-structure Density functional theory Quantum chemistry ab initio calculations 
光谱学与光谱分析
2023, 43(8): 2507
作者单位
摘要
1 中国科学院安徽光学精密机械研究所 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072
Ca3(BO3)2是一种可应用于紫外波段的新型受激Raman散射(SRS)晶体, 但对其SRS活性模式的研究还未深入开展。采用密度泛函理论(DFT)计算方法研究了Ca3(BO3)2晶体的Raman光谱,对晶体的所有Raman活性振动模式进行了指认, 确认了晶体的SRS活性模式起源于BO3-3基团的全对称伸缩振动。CaCO3和Ca(NO3)2晶体的SRS活性模式也起源于平面三角基团 (CO2-3 和NO-3)的全对称伸缩振动,但它们的强度远大于Ca3(BO3)2。电子云密度分析的结果显示: Ca3(BO3)2、 CaCO3、Ca(NO3)2 三种晶体的SRS活性模式的强度与BO3-3、CO2-3、NO-3 三种基团的电子共轭效应正相关。 DFT 计算研究的结果表明:硼原子的同位素效应不影响Ca3(BO3)2晶体SRS活性模式的线宽。泵浦激光沿晶轴aH或cH传播时晶体的Raman 散射截面大致相等。
材料 Raman光谱 受激Raman散射晶体 电子结构 密度泛函理论计算 materials Raman spectrum stimulated Raman scattering crystal electronic structure density functional theory calculation 
量子电子学报
2019, 36(2): 213
作者单位
摘要
1 上海大学材料科学与工程学院, 上海 200072
2 法国国家科学研究中心高温和辐射研究所和奥尔良大学, 法国 奥尔良 45071, 45067
3 中国科学院理化技术研究所, 北京 100190
4 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
测量了BiB3O6晶体从常温到熔融态的拉曼光谱, 考察了其温致结构变化和预测了熔体的结构基元。 同时, 采用量子化学从头计算和密度泛函理论对拉曼光谱进行了计算和结构分析。 结果表明, 随着温度的升高, 对包含阳离子Bi的外部晶格和[BO3]3-硼氧三角形基团结构的温致结构影响有限, 却有效地削弱了[BO4]5-硼氧四面体基团结构, 其松弛度增加, 稳定性变差, 并在熔体结构中彻底消失。 研究表明BiB3O6熔体主要以硼氧六元环[B6O12]6-的形式存在, 阳离子Bi起电荷平衡作用, 其氧配位数为3, 有别于晶体中的6。
三硼酸铋 高温拉曼光谱 熔体结构 量子化学计算 硼氧六元环 Bismuth triborate High temperature Raman spectroscopy Melt structure Quantum chemistry calculation B—O six-member ring 
光谱学与光谱分析
2012, 32(1): 127
作者单位
摘要
中国科学院安徽光学精密机械研究所,安徽 合肥 230031
开展了CuBi3 S5 和CuBi3 Se5 两种化合物的合成研究,并首次报道了这两种化合物的基本光电性质。 以水合肼(N2 H4 ·H2 O)为还原剂,以CuCl、BiCl3 和S(或Se)为原料,通过溶剂热与固相反应相结合的方法 成功制备了CuBi3 S5 和CuBi3 Se5 两种化合物的多晶。采用四点探针法获得了这两种化合物的电阻随温度 变化的关系,结果表明:CuBi3 Se5 呈金属性质,而CuBi3 S5 呈半导体性质。根据Arrhenius关系式 计算出CuBi3 S5 室温下的热激活能为17.1 meV。在室温下对CuBi3 S5 多晶块体进行了霍尔效应实验, 结果表明:其载流子浓度为 3.75×1017 cm-3, 霍尔迁移率为14 cm2V-1s-1, CuBi3 S5 为n型半导体。 漫反射光谱的实验结果表明CuBi3 S5 的禁带宽度约为0.66 eV。
材料 光电性质 溶剂热法 四点探针法 霍尔效应 materials photoelectric properties solvothermal method four-point probe method Hall effect CuBi3 S5 CuBi3 S5 CuBi3 Se5 CuBi3 Se5 
量子电子学报
2011, 28(5): 558
作者单位
摘要
1 中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室,安徽 合肥 230031
2 上海大学上海市现代冶金与材料制备重点实验室,上海 200072
利用高温共焦激光显微拉曼光谱技术,研究了非线性光学晶体LiB3 O5 以及晶 体自助溶生长溶液的高温微结构特征。 通过对LiB3 O5 晶体高温拉曼光谱、Li2 O·4B2 O3 组分玻璃体常温拉曼光谱和Li2 O·4B2 O3 高温 溶液拉曼光谱的分析 表明:晶体、玻璃体中主要的结构单元为包含一个B(为桥氧)结构的硼氧六元环。随着温度的升高, 该六元环中B?4结构稳定性降低,发生硼氧四配位B向三配位B的转变。从而造成包含一个B结构的 硼氧六元环部分被破坏, Li2 O·4B2 O3 高温溶液中硼氧六元环基团B3 相对浓度增高。Li2 O·4B2 O3 高温溶液这一微结构特征对形成LiB3 O5 晶体相是有利的。
材料 LiB3 O5 晶体 助溶剂晶体生长 硼酸盐玻璃 高温拉曼光谱 materials LiB3 O5 crystal high temperature solution crystal growth lithium borate glasses high temperature Raman spectroscopy 
量子电子学报
2011, 28(2): 241
作者单位
摘要
1 中国科学院安徽光学精密机械研究所,安徽 合肥 230031
2 上海大学上海市现代冶金与材料制备重点实验室,上海 200072
分别利用因子群对称分析法和位置群对称分析法对Ca3 (BO3 )2 晶体的振动模式进行了理论分析。 Ca3 (BO3 )2 的晶格振动模式分为外振动和内振动模式,外振动模式为: 3A1g+4A2g+7Eg+3A1u+3A2u+6Eu, 内振动模式为: 2A1g+2A2g+4Eg+2A1u+2A2u+4Eu。Ca3 (BO3 )2 晶体在布里渊区中心Γ点 晶格振动的对称性 分类为: 5A1g+6A2g+11Eg+5A1u+6A2u+11Eu, 其中声学模为: A2u+Eu,拉曼活性光学模为: 5A1g+11Eg,红外活性光学模为:5A2u+10Eu,其余为非拉曼、非红外活性光学振动模。用高温固相法成功合成了 Ca3 (BO3 )2 粉末,测量了它的室温Raman光谱,并利用群论分析的结果对谱图进行了讨论,指认了BO3-3基团的特征振动频率。
光谱学 晶格振动模式 因子群对称分析法 位置群对称分析法 Raman光谱 spectroscopy lattice vibrational modes factor group symmetry analysis position symmetry analysis Ca3 (BO3 )2 Ca3 (BO3 )2 Raman spectrum 
量子电子学报
2011, 28(2): 210

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!