量子电子学报, 2023, 40 (2): 217, 网络出版: 2023-04-15  

红外-太赫兹光电探测器应用及前沿变革趋势

Application and frontier trend of infrared-terahertz photoelectric detector
作者单位
1 中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200080
2 东华大学理学院, 上海 201620
3 上海师范大学数理学院, 上海 200233
4 上海科技大学物质科学与技术学院, 上海 201210
5 上海大学微电子学院, 上海 200444
引用该论文

潘晓凯, 姜梦杰, 王东, 吕旭阳, 蓝诗琪, 卫英东, 何源, 郭书广, 陈平平, 王林, 陈效双, 陆卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217.

PAN Xiaokai, JIANG Mengjie, WANG Dong, LYU Xuyang, LAN Shiqi, WEI Yingdong, HE Yuan, GUO Shuguang, CHEN Pingping, WANG Lin, CHEN Xiaoshuang, LU Wei. Application and frontier trend of infrared-terahertz photoelectric detector[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 217.

参考文献

[1] Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics [J]. Nature Materials, 2017, 16(2): 264-272.

[2] Miao J S, Song B, Xu Z H, et al. Single pixel black phosphorus photodetector for near-infrared imaging [J]. Small, 2018, 14(2): 1702082.

[3] Ye L, Li H, Chen Z F, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction [J]. ACS Photonics, 2016, 3(4): 692-699.

[4] Singh M K, Gautam R. Developing a long-term high-resolution winter fog climatology over south Asia using satellite observations from 2002 to 2020 [J]. Remote Sensing of Environment, 2022, 279: 113128.

[5] Rogalski A, Huckridge D A, Ebert R, et al. Next decade in infrared detectors [J]. Technology and Applications, 2017, 3: 100-105.

[6] Wang C R, Yang L F, Cao X, et al. Recent progress of airborne infrared remote sensing technology in SITP [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 110-121.

[7] Wang H P, Wan X, He Z P. Detectiontechnology of deep space material composition based on infrared reflectance spectroscopy [J]. Spectroscopy and Spectral Analysis, 2018, 38(Sup 1): 59-60.

[8] Rogalski A. History of infrared detectors [J]. Opto-Electronics Review, 2012, 20(3): 279-308.

[9] Ma Q J, Wang J Y, Shu R. Development of infrared spectrometer in deep space exploration [J]. Infrared, 2005, 26(7): 1-7.

[10] Ma Y, Zhang S, Liu Y, et al. Lunar long-wave infrared radiation characteristics based on space-based quantitative measured data [J]. Chinese Optics, 2022, 15(3): 525-533.

[11] Shen J L, Zhang C L. Terahertz nondestructive imaging technology and its application [J]. Nondestructive Testing Technology, 2005, 27(3): 146-147.

[12] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications-Explosives, weapons and drugs [J]. Semiconductor Science and Technology, 2005, 20(7): S266-S280.

[13] Wang L H, Yuan M H, Huang H, et al. Recognition of edge object of human body in THz security inspection system [J]. Infrared and Laser Engineering, 2017, 46(11): 1125002.

[14] Akkas M A. Terahertz wireless data communication [J]. Wireless Networks, 2019, 25(1): 145-155.

[15] Hubers H W. Terahertz heterodyne receivers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 378-391.

[16] Wild W. Terahertz heterodyne technology for astronomy and planetary science [C]. Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 2007: 323-325.

[17] Herschel W. Experiments on the refrangibility of the invisible rays of the Sun [J]. Philosophical Transactions of the Royal Society of London, 1800, 90: 284-292.

[18] Barr E S. Historical survey of the early development of the infrared spectral region [J]. American Journal of Physics, 1960, 28(1): 42-54.

[19] Barr E S. The infrared pioneers-II. macedonio Melloni [J]. Infrared Physics, 1962, 2(2): 67-74.

[20] Barr E S. Historical survey of the early development of the infrared spectral region [J]. American Journal of Physics, 1960, 28(1): 42-54.

[21] Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors [J]. Journal of Applied Physics, 1987, 62(6): 2545-2548.

[22] Albert E. Concerning an heuristic point of view toward the emission and transformation of light [J]. Annals of Physics, 1905, 17:132.

[23] Case T W. Notes on the change of resistance of certain substances in light [J]. Physical Review, 1917, 9(4): 305-310.

[24] Cashman R J. Film-type infrared photoconductors [J]. Proceedings of the IRE, 1959, 47(9): 1471-1475.

[25] Lovell D J. The development of lead salt detectors [J]. American Journal of Physics, 1969, 37(5): 467-478.

[26] Elliott T. Recollections of MCT work in the UK at malvern and southampton [C]. SPIE, 2009, 7298: 1-23.

[27] Grein C H, Young P M, Flatté M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J]. Journal of Applied Physics, 1995, 78(12): 7143-7152.

[28] Li J B, Li D S, Wu S J, et al. The research progress in type II superlattices infrared focal plane array detectors [J]. Infrared Technology, 2021, 43(11): 1034-1043.

[29] Levine B F. Quantum-well infrared photodetectors [J]. Journal of Applied Physics, 1993, 74(8): R1-R81.

[30] Shao X M, Gong H M, Li X, et al. Developments of high performance short-wave infrared InGaAs focal plane detectors [J]. Infrared Technology, 2016, 38(8): 629-635.

[31] Yao L B, Chen N, Hu D M, et al. Digital infrared focal plane array detectors(Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 98-108.

[32] Lu X W, Sun L, Jiang P, et al. Progress of photodetectors based on the photothermoelectric effect [J]. Advanced Materials, 2019, 31(50): e1902044.

[33] Bhan R K, Saxena R S, Jalwani C R, et al. Uncooled infrared microbolometer arrays and their characterisation techniques [J]. Defence Science Journal, 2009, 59(6): 580-589.

[34] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications [J]. ACS Nano, 2014, 8(2): 1086-1101.

[35] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793.

[36] Hu F J, Sun J Y, Brindley H E, et al. Systems analysis for thermal infrared ‘THz torch’ applications [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(5): 474-495.

[37] Müller R, Gutschwager B, Hollandt J, et al. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(7): 654-661.

[38] Qin H, Sun J D, Liang S X, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor [J]. Carbon, 2017, 116: 760-765.

[39] De Y. High temperature superconducting terahertz detector [J]. Advanced Materials, 2015, 3(50): 19020.

[40] Ghosh S, Mukhopadhyay B, Sen G, et al. Performance analysis of GeSn/SiGeSn quantum well infrared photodetector in terahertz wavelength region [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115: 113692.

[41] Lewis R A. A review of terahertz sources [J]. Journal of Physics D: Applied Physics, 2014, 47(37): 374001.

[42] Liu Z J, Liang Z Q, Tang W, et al. Design and fabrication of low-deformation micro-bolometers for THz detectors [J]. Infrared Physics & Technology, 2020, 105: 103241.

[43] Ullah Z, Witjaksono G, Nawi I, et al. A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications [J]. Sensors, 2020, 20(5): 1401.

[44] Siegel P H. Terahertz technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[45] Bai T Z. Principle and Technology of Photoelectric Imaging [M]. Beijing: Beijing Institute of Technology Press, 2006.

[46] Partnership A, Brogan C L, Pérez L M, et al. The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HLTau region [J]. The Astrophysical Journal Letters, 2015, 808(1): L3.

[47] David W, Steve P, Eric Chauvin, et al. The CCAT 25 m diameter submillimeter-wave telescope [C]. Proceedings of SPIE, 2012, 8444(2M): 1-14.

[48] Robson I, Holland W S, Friberg P. Celebrating 30 years of science from the James Clerk Maxwell Telescope [J]. Royal Society Open Science, 2017, 4(9): 170754.

[49] Wootten A, Thompson A R. The Atacama large millimeter/submillimeter array [J]. Proceedings of the IEEE, 2009, 97(8): 1463-1471.

[50] Nicholas G, Peter A R, Francesco E A, et al. The next generation BLAST experiment [J]. Journal of Astronomical Instrumentation, 2014, 3(2): 1440001.

[51] Young E T, Becklin E E, Marcum P M, et al. Early science with SOFIA, the stratospheric observatory for infrared astronomy [J]. The Astrophysical Journal Letters, 2012, 749(2): L17.

[52] Temi P, Marcum P M, Young E, et al. The Sofia observatory at the start of routine science operations: Mission capabilities and performance [J]. The Astrophysical Journal Supplement Series, 2014, 212(2): 24.

[53] Campbell P. IRAS discovery [J]. Nature, 1983, 306(5945): 725.

[54] Neugebauer G, Habing H J, van Duinen R, et al. The infrared astronomical satellite(IRAS) mission [J]. Astrophysical Journal, 1984, 278: L1-L6.

[55] Mather J C. The cosmic background explorer(COBE) mission [C]. Proceedings of SPIE, 1993, 2019: 146-157.

[56] Murakami H, Freund M M, Ken G G, et al. The IRTS(infrared telescope in space) mission [J]. Publications of the Astronomical Society of Japan, 1996, 48(5): L41-L46.

[57] Kessler M F. The Infrared Space Observatory(ISO) mission [J]. Astronomy and Astrophysics, 1996, 315(2): L27-L31.

[58] Werner M W, Roellig T L, Low F J, et al. The Spitzer space telescope mission [J]. Astrophysical Journal Supplement Series, 2004, 154: 1-9.

[59] Pilbratt G L, Riedinger J R, Passvogel T, et al. Herschel space observatory: An ESA facility for far-infrared and submillimetre astronomy [J]. Astronomy and Astrophysics, 2010, 518: L1.

[60] Planck C. Planck early results. I. The Planck mission [J]. Astronomy and Astrophysics, 2011, 536: A1.

[61] Wright E L, Eisenhardt P, MainzerA, et al. The wide-field infrared survey explorer(wise): Mission description and initial on-orbit performance [J]. The Astronomical Journal, 2010, 140(6): 1868-1881.

[62] Menzel M T, Marie B, Michael D, et al. Systems engineering on the James Webb Space Telescope [C]. Proceedings of SPIE, 2010, 7738(0X): 1-13.

[63] Ye Z H, Li H H, Wang J D, et al. Recent hot spots and innovative trends of infrared photon detectors [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 15-39.

[64] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces [J]. Nano Letters, 2016, 16(9): 5319-5325.

[65] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces [J]. Nano Letters, 2017, 17(5): 3027-3034.

[66] Nicholls L H, Rodríguez-Fortuo F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials [J]. Nature Photonics, 2017, 11(10): 628-633.

[67] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces [J]. Nano Letters, 2017, 17(1): 407-413.

[68] Qu Y R, Li Q, Gong H M, et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films [J]. Advanced Optical Materials, 2016, 4(3): 480-486.

[69] Primot J. Theoretical description of Shack-Hartmann wave-front sensor [J]. Optics Communications, 2003, 222(1): 81-92.

[70] Fu Y N, Min C J, Yu J H, et al. Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces [J]. Nanoscale, 2019, 11(39): 18303-18310.

[71] Feng F, Si G Y, Min C J, et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities [J]. Light: Science & Applications, 2020, 9(1): 95.

[72] Wei J X, Li Y, Wang L, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection [J]. Nature Communications, 2020, 11: 6404.

[73] Chen M, Wang Y X, Zhao Z R. Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity [J]. ACS Nano, 2022, 16(10): 17263-17273.

[74] Gunning W J, DeNatale J, Stupar P, et al. Dual band adaptive focal plane array: An example of the challenge and potential of intelligent integrated microsystems [C]. Proceedings of SPIE, 2006, 6232: 62320F.

[75] Musca C A, Antoszewski J, Keating A J, et al. MEMS-based microspectrometers for infrared sensing [C]. International Conference on Optical MEMS and Nanophotonics, 2007: 137-138.

[76] Mao H F, Dilusha Silva K K M B, Martyniuk M, et al. MEMS-based tunable Fabry-Perot filters for adaptive multispectral thermal imaging [J]. Journal of Microelectromechanical Systems, 2016, 25(1): 227-235.

[77] Temple D, Bower C A, Malta D, et al. High density 3-D integration technology for massively parallel signal processing in advanced infrared focal plane array sensors [C]. International Electron Devices Meeting, 2006.

[78] Guo J X, Xie R Z, Wang P, et al. Infrared photo detectors for multidimensional optical information acquisition [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 40-60.

[79] Grein C H, Young P M, Flatté M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J]. Journal of Applied Physics, 1995, 78(12): 7143-7152.

[80] Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states [J]. Nano Letters, 2016, 16(1): 80-87.

[81] Castilla S, Terrés B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction [J]. Nano Letters, 2019, 19(5): 2765-2773.

[82] Luxmoore I J, Liu P Q, Li P L, et al. Graphene-metamaterial photodetectors for integrated infrared sensing [J]. ACS Photonics, 2016, 3(6): 936-941.

[83] De Sanctis A, Mehew J D, Craciun M F, et al. Graphene-based light sensing: Fabrication, characterisation, physical properties and performance [J]. Materials, 2018, 11(9): 1762.

[84] Ryzhii V, Ryzhii M, Shur M S, et al. Resonant plasmonic terahertz detection in graphene split-gate field-effect transistors with lateral p-n junctions [J]. Journal of Physics: Applied Physics, 2016, 49(31): 1-14.

[85] Liu C L, Wang L, Chen X S, et al. Room temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene [J]. Advanced Optical Materials, 2018, 6(24): 1800836.

[86] Wu D, Yan K, Zhou Y, et al. Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions [J]. Journal of the American Chemical Society, 2013, 135(30): 10926-10929.

[87] Wang L, Liu C L, Chen X S, et al. Toward sensitive room-temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor [J]. Advanced Functional Materials, 2017, 27(7): 1604414.

[88] Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications [J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291.

[89] Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging [J]. Nano Letters, 2014, 14(11): 6414-6417.

[90] Lee D, Choi Y, Hwang E, et al. Black phosphorus nonvolatile transistor memory [J]. Nanoscale, 2016, 8(17): 9107-9112.

[91] Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331.

[92] Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors [J]. Advanced Materials, 2015, 27(37): 5567-5572.

[93] Viti L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes [J]. Nanoscale, 2019, 11(4): 1995-2002.

[94] Guo W L, Dong Z, Xu Y J, et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices [J]. Advanced Science, 2020, 7(5): 1902699.

[95] Khurgin J B. Two-dimensional exciton-polariton—Light guiding by transition metal dichalcogenide monolayers [J]. Optica, 2015, 2(8): 740-742.

[96] Guo Q S, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain [J]. Nano Letters, 2016, 16(7): 4648-4655.

[97] Liu H Q, Chen Z X, Chen X C, et al. Terahertz photodetector arrays based on a large scale MoSe2 monolayer [J]. Journal of Materials Chemistry C, 2016, 4(40): 9399-9404.

[98] Yoshimi R, Tsukazaki A, Kikutake K, et al. Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor [J]. Nature Materials, 2014, 13(3): 253-257.

[99] Lawal A, Shaari A, Ahmed R, et al. First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector [J]. Physica B: Condensed Matter, 2017, 520: 69-75.

[100] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions [J]. Physical Review Letters, 2007, 98(10): 106803.

[101] Yang J, Yu W Z, Pan Z H, et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity [J]. Small, 2018, 14(37): e1802598.

[102] Zhou J, Xu H W, Shi Y L, et al. Terahertz driven reversible topological phase transition of monolayer transition metal dichalcogenides [J]. Advanced Science, 2021, 8(12): e2003832.

潘晓凯, 姜梦杰, 王东, 吕旭阳, 蓝诗琪, 卫英东, 何源, 郭书广, 陈平平, 王林, 陈效双, 陆卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217. PAN Xiaokai, JIANG Mengjie, WANG Dong, LYU Xuyang, LAN Shiqi, WEI Yingdong, HE Yuan, GUO Shuguang, CHEN Pingping, WANG Lin, CHEN Xiaoshuang, LU Wei. Application and frontier trend of infrared-terahertz photoelectric detector[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 217.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!