姚晨禹 1,2张力波 1,3卫英东 1王林 1,*[ ... ]陆卫 1,2
作者单位
摘要
1 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 中国科学院大学杭州高等研究院 物理与光电工程学院,浙江 杭州 310024
二维材料中的新量子态对凝聚态物理和现代光电器件的发展具有重要意义。然而具有宽带、室温和快速响应能力的太赫兹光电探测技术,由于缺乏暗电流和光吸收之间的最佳平衡,仍然面临着巨大的挑战。在这项研究中,作者合成了新型拓扑绝缘体材料GeBi4Te7,并搭建了其与Bi2Te3的范德华异质结,以实现高灵敏度的太赫兹光电探测器。在平面金属-材料-金属结构中实现了在室温下将低光子能量太赫兹波段直接转化为光电流。结果表明,基于Bi2Te3-GeBi4Te7的太赫兹光电探测器能够实现0.02 ~0.54 THz的宽谱探测,且具有很高的光响应率(在 0.112、0.27、0.5 THz下分别为 592 V?W-1、203 V?W-1、40 V?W-1),响应时间小于6 μs。值得注意的是,它被用于高频太赫兹的成像应用演示。这些结果为Bi2Te3-GeBi4Te7拓扑绝缘体异质结材料的低能量光电应用开辟了可行性途径。
太赫兹 拓扑绝缘体 天线 异质结 terahertz topological insulator antenna heterojunction 
红外与毫米波学报
2023, 42(3): 362
潘晓凯 1,*姜梦杰 1,2王东 1,3吕旭阳 1,2[ ... ]陆卫 1
作者单位
摘要
1 中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200080
2 东华大学理学院, 上海 201620
3 上海师范大学数理学院, 上海 200233
4 上海科技大学物质科学与技术学院, 上海 201210
5 上海大学微电子学院, 上海 200444
自红外辐射被发现以来, 科学家一直在努力将红外技术应用于地球观测、航天遥感和宇宙探索等领域。目前, 第二、三代红外探测器已进入大规模应用, 高端三代也在逐步突破, 并随着材料制备技术、纳米加工技术、集成技术和相关交叉学科的发展, 开始出现了具有前瞻性的新材料、新技术和新概念。红外-太赫兹探测器也开始由单一探测、被动探测和探测分立的传统探测器形式, 逐渐走向多维探测、自主探测和智能化芯片集成的变革发展方向。在介绍光电探测器物理机制的基础上, 概述了红外-太赫兹探测技术在天文遥感领域的应用与发展, 重点综述了红外-太赫兹探测器有望出现变革式发展的三大方向, 包括基于人工微结构的光场集成、基于三维堆叠技术的片上智能化和新型低维材料的应用, 并展望了未来探测器向着超高性能、多维感知、智能化和感存算一体化的发展趋势。
光电子学 太赫兹探测器 天文遥感 多维感知 集成化 二维材料 optoelectronics terahertz detector astronomical remote sensing multi-dimensional perception integration two-dimensional material 
量子电子学报
2023, 40(2): 217

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!