激光技术, 2022, 46 (3): 374, 网络出版: 2022-06-14  

基于多FBG组网的智能装配修正系统研究

Research on intelligent assembly correction system based on multi-FBG network
作者单位
1 沧州师范学院 计算机科学与工程学院, 沧州 061001
2 长春理工大学 光电工程学院, 长春 130013
摘要
工况环境下为了稳定地获取工件状态信息, 采用多光纤布喇格光栅(FBG)组网监测的方法, 将多光纤光栅传感器分布于装配结构的工装上, 在获取敏感位置实时应变场数据的基础上, 分析了不同装配误差与应变场分布的函数关系, 并给出了合适的修正参数。结果表明, 在工件上分别施加100N的应力时, x轴方向的最大形变值为0.86mm, y轴方向的最大形变值为0.69mm; 与采用激光扫描获得的标准测量数据对比可知, x轴上测试的敏感位置形变值平均误差优于4.7%, y轴上测试的敏感位置形变值平均误差优于3.9%。采用光纤传感实现装配过程的智能修正是可行的, 并且其在整个测试范围内具有很好的线性度和可重复性, 可提高智能装配控制效果。
Abstract
In order to obtain the status information of the workpiece stably under the working environment, the method of multi-fiber Bragg grating (FBG) network monitoring was adopted, and the multi-fiber grating sensors were distributed on the tooling of the assembly structure. On the basis of obtaining the real-time strain field data of the sensitive positions, the difference was analyzed. The function relationship between the assembly error and the strain field distribution, and the appropriate correction parameters were given. The results show that when 100N stress is applied to the workpiece, the maximum deformation value in the x-axis direction is 0.86mm, and the maximum value in the y-axis direction is 0.69mm; compared with the standard measurement data obtained by laser scanning, it can be seen that the test on the x-axis. The average error of the deformation value of the sensitive position is better than 4.7%, and the average error of the deformation value of the sensitive position tested on the y-axis is better than 3.9%. It is feasible to use optical fiber sensing to realize intelligent correction of the assembly process, and it has good linearity and repeatability in the entire test range, which can improve the effect of intelligent assembly control.
参考文献

[1] XU O, LU S, FENG S, et al. Novel fiber-laser-based fiber Bragg grating strain sensor with high-birefringence Sagnac fiber loop mirror[J]. Chinese Optics Letters, 2008, 6(11):818-820.

[2] JIANG Y, DUAN Zh, ZHANG X L, et al. Research on the on-line measurement of a birefringence fiber loop mirror strain sensor[J]. Laser Technology, 2020, 44(3): 315-320(in Chinese).

[3] ALANANY Y M, TAIT M J. Fiber-reinforced elastomeric isolators for the seismic isolation of bridges[J]. Composite Structures, 2016, 160(7):300-311.

[4] KUANG Y, GUO Y, XIONG L, et al. Packaging and temperature compensation of fiber Bragg grating for strain sensing: A survey[J]. Photonic Sensors, 2018, 8(4):320-331.

[5] SHI Q, REN L, YOU R Zh, et al. Development and application of smart bolt based on FBG sensors[J]. Instrument Technique and Sensor, 2020,(12): 10-15(in Chinese).

[6] LI Ch L, TANG J G, CHENG Ch, et al. FBG arrays for quasi-distributed sensing:A review[J]. Photonic Sensors, 2021,11(1): 91-108.

[7] WANG X Y, DENGY Q. Multi-reflection optimization of FBG array[J]. Journal of Yanbian University(Natural Science Edition), 2020, 46(2): 134-139(in Chinese).

[8] MENG X Q, YU J Zh, WANG J. Optical fiber sensor adjustment system for automated assembly process[J]. Semiconductor Optoelectronics, 2020, 41(4): 578-581(in Chinese).

[9] MULLE M, YUDHANTO A, LUBINEAU G, et al. Internal strain a-ssessment using FBGs in a thermoplastic composite subjected to quasi-static indentation and low-velocity impact[J]. Composite Structures, 2019, 215(32):305-316.

[10] ARNALDO G, LEAL J, CAMILO A R, et al. Simultaneous mea-surement of pressure and temperature with a single FBG embedded in a polymer diaphragm[J]. Optics & Laser Technology, 2019, 112(93): 77-84.

[11] YU C W, LEI S C, CHEN W S, et al. Downhole fiber optic tempe-rature-pressure innovative measuring system used in Sanshing geothermal test site[J]. Geothermics, 2018, 74(31): 190-196.

[12] GUO Y X, LI X, KONG J Y, et al. Sliding type fiber Bragg grating displacement sensor[J]. Optics & Precision Engineering, 2017, 25(1):50-58.

[13] BOTSIS J, HUMBERT L, COLPO F, et al. Embedded fiber Bragg grating sensor for internal strain measurement sin polymeric materials[J].Optics and Laser sin Engineering, 2005, 43(3): 491-510.

[14] SUN B Ch, LI J Zh, ZHANG W T. Fiber Bragg grating sensor[J]. Optical Fiber Sensing and Structural Health Monitoring Technology ,2019, 26(4):77-148.

[15] XIAO H Zh, ZHANG Y N, SHEN L Y, et al. Research on curvature serialization in the curve reconstruction algorithm based on fiber Bragg gratings[J]. Chinese Journal of Scientific Instrument, 2016, 37(5): 993-999(in Chinese).

[16] WANG J Y, LIU Zh Ch, LIN X Zh, et al. Fiber Bragg grating strain detection system for digital calibration[J]. Laser Technology, 2020, 44(5): 570-574(in Chinese).

[17] YUCEL M, TORUN M. Simplified fiber Bragg grating-based tempe-rature measurement system design with enhanced high signal-to-noise ratio[J]. Microwave & Optical Technology Letters, 2018, 60(4):965-969.

[18] ESEQUIEL M, LUIS P, ANDREAS T, et al. Optical sensors for bond-slip characterization and monitoring of RC structures[J]. Sensors and Actuators, 2018, A280(1): 332-339.

[19] JONAS H O, CHESINI G, VALDIR A S, et al. Simplifying the design of microstructured optical fibre pressure sensors[J]. Scientific Reports, 2017,7: 372-381.

[20] SUN L, HAO H, ZHANG B B, et al. Strain transfer analysis of embedded fiber Bragg grating strain sensor[J]. Journal of Testing and Evaluation, 2016,44(6): 2312-2320.

于春荣, 陈寒梅, 常占胜, 刘智超. 基于多FBG组网的智能装配修正系统研究[J]. 激光技术, 2022, 46(3): 374. YU Chunrong, CHEN Hanmei, CHANG Zhansheng, LIU Zhichao. Research on intelligent assembly correction system based on multi-FBG network[J]. Laser Technology, 2022, 46(3): 374.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!