激光技术, 2023, 47 (6): 803, 网络出版: 2023-12-05  

基于Mach-Zehnder干涉仪的自相似激光器压缩系统设计

Design of self-similar laser compression system based on Mach-Zehnder interferometer
作者单位
1 广东工业大学 机电工程学院,广州 510006
2 广东工业大学 精密微电子制造技术重点实验室,广州 510006
摘要
为了研究自相似脉冲在Mach-Zehnder干涉仪的压缩特性,采用非线性薛定谔方程对自相似脉冲的演化和压缩进行了模拟,分析了基于级联单模光纤的Mach-Zehnder干涉仪的光纤参数对脉冲压缩的影响。结果表明,在不考虑高阶色散的情况下,当上臂的两种单模光纤长度分别为8.16 m和2.16 m、下臂的单模光纤长度为8.16 m时,获得半峰全宽为27.85 fs、峰值功率为1860.59 W、基座能量比例为10.241%的最佳压缩脉冲; 考虑高阶色散时,脉冲在单模光纤中传输呈现出峰值功率增大、基座增大的现象,且脉冲右移不利于输出基座较小的压缩脉冲; 当3阶色散系数小于0.001 ps3/km时,利用Mach-Zehnder干涉仪来压缩能获得质量较好的飞秒脉冲。该研究结果对于自相似脉冲的压缩研究具有一定的参考价值。
Abstract
In order to study the compression characteristics of the self-similar pulse in the Mach-Zehnder interferometer(MZI), the evolution and compression of the self-similar pulse were simulated by using the nonlinear Schrdinger equation. The influence of the fiber parameters on pulse compression of the MZI based on the cascade single-mode fiber was analyzed. The results show that without considering the high-order dispersion, when the length of the two single-mode fibers in the upper arm is 8.16 m and 2.16 m, respectively, and the length of the single-mode fiber in the lower arm is 8.16 m, the optimal compression pulse is obtained with the full width at half maximum of 27.85 fs, peak power of 1860.59 W and the pedestal energy ratio is 10.241%. When high-order dispersion is considered, it is found that pulse transmission in single-mode fiber presents the phenomenon of the peak power increase and the pedestal energy ratio increase, and the right shift of pulse is not favorable to output compression pulse with a small pedestal. When the third-order dispersion is less than 0.001 ps3/km, femtosecond pulses of good quality can be obtained by using MZI compression. The result of this study has certain reference values for self-similar pulse compression research.
参考文献

[1] SHAH L, FERMANN M. High-power ultrashort-pulse fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 552-558.

[2] WANG J,LI J Zh, WEN W F, et al. Precisely measuring for optical pulse time delay using autocorrelation[J].Chinese Optics,2015,8(2):270-276(in Chinese).

[3] XIA Zh Y,QIAN J,WANG G D, et al. Research progress on ultrashort pulsed laser processing of metallic glasses[J].Laser & Optoelectronics Progress, 2021, 58(15):1516027(in Chinese).

[4] ZOU G Sh, LIN L Ch, XIAO Y, et al. Ultrafast laser nanojoining and its applicantions in the manufacturing of micro-nano devices[J].Chinese Journal of Lasers, 2021, 48(15): 1502001(in Chinese).

[5] LIU Y X,ZHANG R K,WANG H,et al.25 GHz semiconductor mode-locked laser with subpicosecond pulse output in the 1.5 μm band(Invited)[J].Acta Photonica Sinica, 2022,51(2):0251211(in Chin-ese).

[6] SALTARELLI F, GRAUMANN I J, LANG L, et al. Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser[J]. Optics Express, 2019, 27(22): 31465.

[7] MULLER M, ALESHIRE C, KLENKE A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086.

[8] WANG W, WU H, LIU C, et al. Multigigawatt 50 fs Yb∶CALGO regenerative amplifier system with 11 W average power and mid-infrared generation[J]. Photonics Research, 2021, 9(8): 1439-1445.

[9] MENG Y, ZHANG S, JIN C, et al. Enhanced compression of femtosecond pulse in hollow-core photonic bandgap fibers[J]. Optics Communications, 2010, 283(11): 2411-2415.

[10] LI Q, HUANG H. Effective pulse compression in dispersion decreasing and nonlinearity increasing fibers[J]. Optics Communications, 2015, 342: 36-43.

[11] YE F, HUANG J, GANDHI M S A, et al. Nearly self-similar pulse compression of high-repetition-rate pulse trains in tapered silicon waveguides[J]. Journal of Lightwave Technology, 2021, 39(14): 4717-4724.

[12] YU T, LIU X, PRYAMIKOV A, et al. Femtosecond pulse compression with pedestal suppression in a sagnac interferometer constructed of anti-resonant hollow core fiber[J]. IEEE Photonics Journal, 2021, 13(2): 1-9.

[13] LI M L, ZHANG Q F, SHI Sh D. Design of self-similar pulse compression fiber based on chirp compensation technology[J]. Laser Technology, 2021, 45(5): 566-570(in Chinese).

[14] ZHAO Y,LIU Y Zh, ZHAO D Sh, et al. Evolution of mode-locked technology of fiber lasers[J]. Laser Technology, 2009,33(2):162-165(in Chinese).

[15] WANG F, LI Q. Cascaded single mode fibers for higher-order soliton compression at 2 μm[J]. Applied Optics, 2020, 59(17):E17-E22.

[16] XU Y Zh,ZHANG G,YE H, et al. Effect of initial frequency chirp on pulse compression of higher-order solitons in cascaded sing-mode fibers[J].Chinese Journal of Luminescence, 2016,37(11):1360-1366(in Chinese).

[17] CAO W H,XU P,LIU S H,et al.Soliton-effect pulse compression in a dispersion-decreasing fiber-based Mach-Zehnder interferometer[J].Acta Optica Sinica, 2011,31(4):0419001 (in Chinese).

[18] FERMANN M E, KRUGLOV V I, THOMSEN B C, et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 2000, 84(26): 6010-6013.

[19] ZHANG Q F, DENG Y H. Influence of gain coefficient on the self-similar pulses propagation in a dispersion-decreasing fiber[J]. Optik, 2016, 127(12): 5110-5114.

[20] ZHANG Q F. Investigation on generalized analytical solution of similariton chirp in different tapered DDF and NIF[J]. Optical and Quantum Electronics, 2021, 53(1):54.

[21] WANG X D,ZHOU Zh,LI S W,et al.Self-similar pulse evolution in ytterbium doped fiber amplifiers[J].Laser Technology, 2012,36(1):8-12(in Chinese).

[22] DU Y, SHU X. Transformation from conventional dissipative solitons to amplifier similaritons in all-normal dispersion mode-locked fiber lasers[J]. IEEE Photonics Journal, 2018, 10(1): 1-11.

[23] HIROOKA T, NAKAZAWA M. Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion[J]. Optics Letters, 2004, 29(5): 498-500.

[24] DORAN N J, WOOD D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 53-58.

[25] ZHANG Q F, LI H, WU L M, et al. Research on evolution region of self-similar pulses in a dispersion-decreasing fiber[J]. Optical and Quantum Electronics, 2019, 51(6):190.

[26] CAO W H, WAI P K. Picosecond soliton transmission by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors[J]. Applied Optics, 2005, 44(35): 7611-7620.

[27] LI M L,ZHANG Q F,SHI Sh D, et al. Design of self-similar pulse compression grating pair based on chirp compensation[J].Study on Optical Communications, 2021(4):56-60(in Chinese).

庞亮雨, 张巧芬, 高梓皓, 陈楚浜, 吴铭扬. 基于Mach-Zehnder干涉仪的自相似激光器压缩系统设计[J]. 激光技术, 2023, 47(6): 803. PANG Liangyu, ZHANG Qiaofen, GAO Zihao, CHEN Chubang, WU Mingyang. Design of self-similar laser compression system based on Mach-Zehnder interferometer[J]. Laser Technology, 2023, 47(6): 803.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!