大气与环境光学学报, 2022, 17 (3): 304, 网络出版: 2022-07-22  

长株潭城市群PM2.5多尺度演化的EEMD和多重分形分析

Multiscale ensemble empirical mode decomposition and multifractal approach of PM2.5 evolution in Changsha-Zhuzhou-Xiangtan Urban Agglomeration
作者单位
1 吉首大学数学与统计学院, 湖南 吉首 416000
2 洪江高新技术产业开发区 (洪江市) 管理委员会, 湖南 怀化 418000
3 吉首大学生物资源与环境科学学院, 湖南 吉首 416000
摘要
为解析长株潭地区 PM2.5 演化的多尺度特征, 阐释其演化的主要动力机制, 提出了一种集合经验模态分解 (EEMD) 和多重分形消除趋势波动分析 (MFDFA) 的新模型, 研究了该区域 2015 年 1 月 1 日至 2019 年 12 月 31 日 PM2.5 浓度的动力演化。利用 EEMD 方法获得了各城市 PM2.5 的高频模态以及趋势项, 趋势项结果表明 PM2.5 浓度呈下降趋势, 而 PM2.5 的高频模态反映了 PM2.5 浓度波动的非线性特征。进一步采用 MFDFA 方法对其高频累加模态进行分析, 研究表明 PM2.5 高频分量存在较强的多重分形特征。此外, 还利用相位随机替代法和随机重构法研究了其多重分形的主要来源, 结果表明 PM2.5 浓度波动在不同时间尺度内的长期持续作用是造成高浓度 PM2.5 污染涌现的主要动力因素。最后, 讨论了气象条件对其高频分量多重分形强度的影响, 结果发现, 相对于其他季节, 冬季 PM2.5 高频模态的多重分形强度更强。分析表明, 尽管该区域通过大气污染行动计划已取得积极的污染控制效果, 但在冬季, 污染物演化的长期持续动力机制对 PM2.5 高频模态的演化发挥着更加主导的控制作用, 不同时间尺度上 PM2.5 非线性长期持续动力机制导致冬季仍有高浓度 PM2.5 涌现的风险, 甚至出现更为严重的污染。本研究结果对于区域 PM2.5 多时间尺度演化动力特征的研究以及大气污染预测预警机制的建立具有重要意义。
Abstract
To analyze the multi-scale characteristics of PM2.5 in Changsha-Zhuzhou-Xiangtan region, China, and explain the main dynamic mechanism of PM2.5 evolution, a novel ensemble empirical mode decomposition and multifractal detrended fluctuation analysis (EEMD-MFDFA) model is proposed, and then the dynamic evolution of PM2.5 hourly average concentrations in Xiangtan, Changsha and Zhuzhou from January 1, 2015 to December 31, 2019 is studied. Through EEMD, the high-frequency modes and trend terms of PM2.5 are obtained for the three cities. The results of the trend term show a decreasing trend of PM2.5 concentrations, and the high-frequency mode of PM2.5 reflects the nonlinear characteristics of PM2.5 concentration fluctuation. Furthermore, MFDFA method is used to analyze the high-frequency cumulative mode of PM2.5. The results indicate that the high-frequency mode of PM2.5 has strong multifractal characteristics. In addition, the main sources of multifractal characteristics are studied by using shuffling procedure and phase randomization. The results indicate that the long-term persistence of PM2.5 concentration fluctuation in different time scales is the maindynamic factor for the emergence of high concentration PM2.5. Finally, the influence of meteorological conditions on the multifractal strength of high-frequency modes of PM2.5 is discussed. The results show that the multifractal strength of PM2.5 in winter was stronger than that in other seasons. The analysis shows that although the air pollution in Changsha-Zhuzhou-Xiangtan Urban Agglomeration has been effectively controlled through the air pollution action plan, in winter, the long-term persistence mechanism of air pollution plays a more dominant role in controlling the PM2.5 evolutions, and the non-linear long-term persistent mechanism of PM2.5 at different time scales can lead to the risk of emergence of high concentration PM2.5 in winter, and even more serious air pollution events. The results have great significance for studying the dynamic characteristics of regional PM2.5 multi-scale evolution and forecasting haze.
参考文献

[1] Zhang L K, Lu S F, Jiao K L, et al. Pollution characteristics of particulate matter in urban districts of Baotou and their relationships with meteorological conditions[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(6): 401-410.

[2] Yang Y Y, Zhou H, Wang X L, et al. Comparison and analysis of a heavy pollution weather process in the south Changsha-Zhuzhou-Xiangtan and north Beijing-Tianjin-Hebei urban agglomeration[J]. Journal of Catastrophology, 2017, 32(2): 141-145.

[3] Xie Z H, Liu C Q, Shi K. Impacts of PM10 on the radiation environments of the atmosphere in Chengdu City[J]. Research of Environmental Sciences, 2016, 29(7): 972-977.

[4] Shi K. Self-organized criticality of PM2.5 during a typical haze period in Chengdu, China[J]. Acta Scientiae Circumstantiae, 2014, 34(10): 2645-2653.

[5] Parrish D D, Zhu T. Clean air for megacities[J]. Science, 2009, 326(5953): 674-675.

[6] Liu H L, Wu Y, Chen M D, et al. Characteristics of atmospheric PM2.5 in Nanjing City and its cytotoxicity in human lung epithelial cells A549[J]. Research of Environmental Sciences, 2018, 31(10): 1736-1742.

[7] Xie Z X, Qin Y C, Zheng Z C, et al. Assessing the death effect of PM2.5 pollution in cities of atmospheric pollution transmission channel in the Beijing-Tianjin-Hebei district[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 843-852.

[8] Wang Z, Han B, Ni T R, et al. Health risk assessment of trace elements of PM2.5 exposure for the elderly subpopulation in Tianjin, China[J]. Research of Environmental Sciences, 2013, 26(8): 913-918.

[9] Weng Y C, Chang N, Lee T. Nonlinear time series analysis of ground-level ozone dynamics in Southern Taiwan[J]. Journal of Environmental Management, 2008, 87(3): 405-414.

[10] Lu W Z, Wang X K. Evolving trend and self-similarity of ozone pollution in central Hong Kong ambient during 1984-2002[J]. Science of the Total Environment, 2006, 357(1/2/3): 160-168.

[11] Zhu J L, Liu Z G. Long-range persistence of acid deposition[J]. Atmospheric Environment, 2003, 37(19): 2605-2613.

[12] Shi K, Liu C Q, Ai N S. Air quality analysis for Shanghai using multi-fractal approach[J]. Environmental Pollution & Control, 2008, 30(9): 60-64.

[13] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 316(1/2/3/4): 87-114.

[14] Schumann A Y, Kantelhardt J W. Multifractal moving average analysis and test of multifractal model with tuned correlations[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(14): 2637-2654.

[15] Paladin G, Vulpiani A. Anomalous scaling laws in multifractal objects[J]. Physics Reports, 1987, 156(4): 147-225.

[16] Shen C H, Huang Y, Yan Y N. An analysis of multifractal characteristics of API time series in Nanjing, China[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 451: 171-179.

[17] Huang Y, Liu C Q, Zheng K L, et al. Multifractal analysis of PM2.5 evolution during a typical haze[J]. Environmental Science & Technology, 2019, 42(2): 67-73.

[18] Munoz D A, Galvez C G, Balderas L J A, et al. Multifractal analysis of air pollutants time series[J]. Revista Mexicana De Fisica, 2013, 59(1): 7-13.

[19] Du J, Liu C Q, Huang H L, et al. Multiscale EEMD decomposition of PM2.5 in Chengdu during winter and self-organized criticality of air pollution[J]. Environmental Science & Technology, 2019, 42(8): 133-141.

[20] Wu Z H, Huang N. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.

[21] Kim T, Shin J Y, Kim S, et al. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition[J]. Journal of Hydrology, 2018, 557: 726-739.

[22] Wang J, Wang X, Lei X H, et al. Teleconnection analysis of monthly streamflow using ensemble empirical mode decomposition[J]. Journal of Hydrology, 2020, 582: 124411.

[23] Xu M J, Shang P J, Lin A J. Cross-correlation analysis of stock markets using EMD and EEMD[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 442: 82-90.

[24] Zhang N N, Lin A J, Shang P J. Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 477: 161-173.

[25] Gong X, Lin B Q. Modeling stock market volatility using new HAR-type models[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 516: 194-211.

[26] He T. Study on the Pollution Space Update of Changsha-Zhuzhou-Xiangtan Urban Agglomeration[D]. Changsha: Hunan Normal University, 2016.

[27] He T, Shuai H, Zhu X. Pollution space recognition and pollution distribution of Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Scientia Geographica Sinica, 2016, 36(7): 1081-1090.

[28] Liao Z H, Fan S J, Huang J, et al. Characteristic analysis of a multi-day pollution event in Chang-Zhu-tan metropolitan area during October 2013[J]. Environmental Science, 2014, 35(11): 4061-4069.

[29] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.

[30] Qi O Y, Lu W X, Xin X, et al. Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction[J]. Water Resources Management, 2016, 30(7): 2311-2325.

[31] Smitha B, Paul Joseph K. Fractal and multifractal analysis of atherosclerotic plaque in ultrasound images of the carotid artery[J]. Chaos, Solitons & Fractals, 2019, 123: 91-100.

[32] Lahmiri S, Bekiros S. Chaos, randomness and multi-fractality in bitcoin market[J]. Chaos Solitons & Fractals, 2018, 106: 28-34.

[33] Menceur M, Mabrouk A B. A joint multifractal analysis of vector valued non Gibbs measures[J]. Chaos, Solitons & Fractals, 2019, 126: 203-217.

[34] Lahmiri S, Bekiros S, Salvi A. Long-range memory, distributional variation and randomness of bitcoin volatility[J]. Chaos, Solitons & Fractals, 2018, 107: 43-48.

[35] Kantelhardt J W, Rybski D, Zschiegner S A, et al. Multifractality of river runoff and precipitation: Comparison of fluctuation analysis and wavelet methods[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 330(1/2): 240-245.

[36] Shi K, Li W Y, Liu C Q, et al. Multifractal fluctuations of Jiuzhaigou tourists before and after Wenchuan earthquake[J]. Fractals, 2013, 21(1): 1350001.

[37] He J J, Gong S L, Yu Y, et al. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities[J]. Environmental Pollution, 2017, 223: 484-496.

[38] Liu T, Gong S L, Yu M, et al. Contributions of meteorology and emission to the 2015 winter severe haze pollution episodes in Northern China[J]. Atmospheric Chemistry and Physics, 2016: 1-17.

[39] Laa I, del Ser J, Padró A, et al. The role of local urban traffic and meteorological conditions in air pollution: A data-based case study in Madrid, Spain[J]. Atmospheric Environment, 2016, 145: 424-438.

[40] Wang Y Q, Zhang X Y, Sun J Y, et al. Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China[J]. Atmospheric Chemistry and Physics, 2015, 15: 13585-13598.

[41] Liu C Q, Geng H, Shen P, et al. Coupling detrended fluctuation analysis of the relationship between O3 and its precursors-a case study in Taiwan[J]. Atmospheric Environment, 2018, 188: 18-24.

杜娟, 刘春琼, 吴波, 张娇, 黄毅, 史凯. 长株潭城市群PM2.5多尺度演化的EEMD和多重分形分析[J]. 大气与环境光学学报, 2022, 17(3): 304. DU Juan, LIU Chunqiong, WU Bo, ZHANG Jiao, HUANG Yi, SHI Kai. Multiscale ensemble empirical mode decomposition and multifractal approach of PM2.5 evolution in Changsha-Zhuzhou-Xiangtan Urban Agglomeration[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 304.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!