硅酸盐学报, 2023, 51 (8): 2074, 网络出版: 2023-10-07  

通用硅酸盐水泥基材料低频介电性能的研究进展

Low-Frequency Dielectric Behavior of Common Portland Cement-Based Materials: A Review
作者单位
1 河海大学力学与材料学院,南京 211100,中国
2 江苏省建筑科学研究院有限公司,高性能土木工程材料国家重点实验室,南京 210008,中国
3 纽约州立大学布法罗分校机械与航空航天工程学院,布法罗 14260-4400,美国
4 东南大学材料科学与工程学院,南京 211189,中国
5 北京理工大学机电学院,北京 100081,中国
摘要
介电性能描述了水泥基材料中的极化现象,即正负电荷中心发生分离的现象。目前,国内外学者针对通用硅酸盐水泥基材料的低频介电性能开展了大量研究,涉及水泥基材料的微结构、水泥水化过程、受力状态等,但缺少对最新成果的归纳整理和综合评述。本文通过综述近20年来国内外学者对通用硅酸盐水泥基材料低频介电性能的最新研究成果,对介电常数的测量方法进行介绍,分析了通用硅酸盐水泥基材料中的极化机理,讨论了骨料、水灰比、应力/应变和温度等因素对通用硅酸盐水泥基材料介电性能的影响规律。结果表明:孔隙溶液中的离子是影响通用硅酸盐水泥基材料介电性能的主要原因,通过离子的移动形成的电偶极子以串联的方式连接。骨料和外掺物通过影响微结构影响介电性能。温度升高和压应力会增强介电性能,温度降低和拉应力会减弱介电性能。最后针对今后需要深入开展的相关研究提出建议。
Abstract
Dielectric behavior pertains to the polarization of cement-based materials, in which the positive and negative charge centers are separated. Recent work on the dielectric behavior of common Portland cement-based materials in a low frequency regime were carried out, including the dependence of dielectric behavior on microstructures, hydration process, loadings, etc. This review represented the results of dielectric behavior of common Portland cement-based materials over the past decade and introduced the dielectric measurement method and the dependence of polarization on aggregates, water cement ratio, stress/strain, and temperature. It is indicated that some movable ions in pore solution dominate the dielectric behavior, in which the electric dipoles are in series. Aggregates and admixtures affect dielectric behavior due to relevant changes in microstructures. Heating and compression strengthen the dielectric behavior, while cooling and tension weaken the dielectric behavior. In addition, some related future research aspects were also prospected.
参考文献

[1] 同月苹, 王艳, 张少辉. 隧道衬砌纤维混凝土力学性能与耐久性能的研究进展[J]. 材料科学与工程学报, 2022, 40(3): 528-536.

[2] EBOLOR A. Backcasting frugally innovative smart sustainable future cities[J]. J Clean Prod, 2023, 383: 135300.

[3] 刘金涛, 黄存旺, 杨杨, 等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能[J]. 复合材料学报, 2022, 39(1): 313-321.

[4] SAJID H U, JALAL A, KIRAN R, et al. A survey on the effects of deicing materials on properties of Cement-based materials[J]. Constr Build Mater, 2022, 319: 126062.

[5] 王飞, 代伟, 毛英辉, 等. 防护工程电磁屏蔽混凝土电磁损耗及屏蔽性能研究. 混凝土, 2022, 12: 185-188.

[6] XI X, CHUNG D D L. Deviceless cement-based structures as energy sources that enable structural self-powering[J]. Appl Energy, 2020, 280: 115916.

[7] ZHANG E Q, TANG L P. Rechargeable concrete battery[J]. Buildings, 2021, 11(3): 103.

[8] 曹亚龙, 徐金霞, 蒋林华, 等. 自感知镍纳米线/水泥基复合材料的制备及压敏性能[J]. 复合材料学报, 2018, 35(4): 957-963.

[9] 董必钦, 殷慧, 邢锋, 等. 碳纤维水泥基复合材料电阻特性的研究[J]. 建筑材料学报, 2007, 10(5): 538-542.

[10] 秦煜, 阮鹏臻, 唐元鑫, 等. 碳纳米管水泥基复合材料导电特性影响因素研究进展[J]. 硅酸盐学报, 2021, 49(2): 411-419.

[11] SALAMI N, SHOKRI A, ESRAFILIAN M. Vertical quantum tunneling transport based on MoS2/WTe2 nanoribbons[J]. Phys Lett A, 2022, 445: 128228.

[12] JONSCHER A K. Dielectric relaxation in solids[J]. J Phys D: Appl Phys, 1999, 32(14): R57-R70.

[13] EDDIB A A, CHUNG D D L. Electric permittivity of carbon fiber[J]. Carbon, 2019, 143: 475-480.

[14] XI X, CHUNG D D L. Colossal electric permittivity discovered in polyacrylonitrile (PAN) based carbon fiber, with comparison of PAN-based and pitch-based carbon fibers[J]. Carbon, 2019, 145: 734-739.

[15] XI X, CHUNG D D L. Role of grain boundaries in the dielectric behavior of graphite[J]. Carbon, 2021, 173: 1003-1019.

[16] CHUNG D D L, XI X. Factors that govern the electric permittivity of carbon materials in the graphite allotrope family[J]. Carbon, 2021, 184: 245-252.

[17] MAKUL N. Dielectric permittivity of various cement-based materials during the first 24 hours hydration[J]. Open J Inorg Non-Met Mater, 2013, 3: 53-57.

[18] 张莹, 史美伦. 水泥基材料水化过程的交流阻抗研究[J]. 建筑材料学报, 2000, 3(2): 109-112.

[19] 史美伦, 张莹. 水泥水化早中期的交流阻抗研究(Ⅰ): 起始期的交流阻抗响应分析[J]. 建筑材料学报, 2002, 5(3): 210-214.

[20] 史美伦, 张莹. 水泥水化早中期的交流阻抗研究(Ⅱ): 诱导期到减速期的交流阻抗响应[J]. 建筑材料学报, 2002, 5(4): 331-335.

[21] 陈向荣, 史美伦, 贺鸿珠, 等. 水硬性胶凝材料水化性质评估的阻抗方法[J]. 建筑材料学报, 2011, 14(1): 22-25.

[22] CHUNG D D L, WANG Y L. Capacitance-based stress self-sensing in cement paste without requiring any admixture[J]. Cem Concr Compos, 2018, 94: 255-263.

[23] SHI K R, CHUNG D D L. Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling[J]. Smart Mater Struct, 2018, 27(10): 105011.

[24] CHUNG D D L. Self-sensing concrete: From resistance-based sensing to capacitance-based sensing[J]. Int J Smart Nano Mater, 2021, 12(1): 1-19.

[25] WANG Y L, CHUNG D D L. Capacitance-based defect detection and defect location determination for cement-based material[J].Mater Struct, 2017, 50(6): 1-13.

[26] WANG Y, CHUNG D D L. Capacitance-based nondestructive detection of aggregate proportion variation in a cement-based slab[J]. Compos Part B: Eng, 2018, 134: 18-27.

[27] VOSS A, POUR-GHAZ M, VAUHKONEN M, et al. Electrical capacitance tomography to monitor unsaturated moisture ingress in cement-based materials[J]. Cem Concr Res, 2016, 89: 158-167.

[28] VOSS A, HNNINEN N, POUR-GHAZ M, et al. Imaging of two-dimensional unsaturated moisture flows in uncracked and cracked cement-based materials using electrical capacitance tomography[J]. Mater Struct, 2018, 51(3): 68.

[29] 杨森, 王远贵, 齐孟, 等. 氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响[J]. 复合材料学报, 2022, 39(5): 2340-2355.

[30] 赵昕, 黄存旺, 傅佳丽, 等. 石墨烯水泥基复合材料的电学性能[J]. 建筑材料学报, 2022, 25(1): 8-15.

[31] 刘卫森, 郭英健, 胡捷, 等. 碳纤维-碱激发砂浆自感知性能[J]. 硅酸盐学报, 2021, 49(7): 1510-1518.

[32] KEDDAM M, TAKENOUTI H, NVOA X R, et al. Impedance measurements on cement paste[J]. Cem Concr Res, 1997, 27(8): 1191-1201.

[33] WANG H, SHEN J L, LIU J Z, et al. Influence of carbon nanofiber content and sodium chloride solution on the stability of resistance and the following self-sensing performance of carbon nanofiber cement paste[J]. Case Stud Constr Mater, 2019, 11: e00247.

[34] HU X, SHI C J, YUAN Q, et al. AC impedance spectroscopy characteristics of chloride-exposed cement pastes[J]. Constr Build Mater, 2020, 233: 117267.

[35] DONG B Q, WU Y S, TENG X J, et al. Investigation of the Cl?傆b migration behavior of cement materials blended with fly ash or/and slag via the electrochemical impedance spectroscopy method[J]. Constr Build Mater, 2019, 211: 261-270.

[36] MELARA E K, MENDES A Z, ANDRECZEVECZ N C, et al. Monitoring by electrochemical impedance spectroscopy of mortars subjected to ingress and extraction of chloride ions[J]. Constr Build Mater, 2020, 242: 118001.

[37] HOU W, HE F Q, LIU Z Q. Characterization methods for sulfate ions diffusion coefficient in calcium sulphoaluminate mortar based on AC impedance spectroscopy[J]. Constr Build Mater, 2021, 289: 123169.

[38] XI X, CHUNG D D L. Effects of cold work, stress and temperature on the dielectric behavior of copper[J]. Mater Chem Phys, 2021, 270: 124793.

[39] LIU W, YIN J N, WANG J H, et al. Dielectric and piezoelectric behavior of PVDF-modified 3-3 type cement-based piezoelectric composites[J]. Smart Mater Struct, 2021, 30(12): 125021.

[40] 张然, 刘磊, 刘岩. 膨胀石墨制备及其对柔性石墨抗拉强度的影响[J]. 非金属矿, 2021, 44(3): 60-63.

[41] CHUNG D D L. A review of exfoliated graphite[J]. J Mater Sci, 2016, 51(1): 554-568.

[42] LEONG C K, AOYAGI Y, CHUNG D D L. Carbon black pastes as coatings for improving thermal gap-filling materials[J]. Carbon, 2006, 44(3): 435-440.

[43] WANG S K, PANG D S, CHUNG D D L. Hygrothermal stability of electrical contacts made from silver and graphite electrically conductive pastes[J]. J Electron Mater, 2007, 36(1): 65-74.

[44] WANG L N, ASLANI F. Electrical resistivity and piezoresistivity of cement mortar containing ground granulated blast furnace slag[J]. Constr Build Mater, 2020, 263: 120243.

[45] TAO J, WANG X H, WANG Z D, et al. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites[J]. Constr Build Mater, 2019, 209: 665-678.

[46] CHUNG D D L. Pitfalls and methods in the measurement of the electrical resistance and capacitance of materials[J]. J Electron Mater, 2021, 50(12): 6567-6574.

[47] 秦昭巧, 陈新杰, 储洪强等. 镀镍碳纤维水泥基材料的电热性能研究[J]. 硅酸盐通报, 2022, 41(3) 802-809.

[48] 刘状壮, 张有为, 季鹏宇, 等. 电热型融雪路面技术研究综述[J]. 长安大学学报(自然科学版), 2022, 42(3): 14-25.

[49] 袁小亚, 张维福, 曹潘磊, 等. 复掺石墨烯/氧化石墨烯改性砂浆电学与融雪化冰性能研究[J]. 功能材料, 2021, 52(12): 12100-12110.

[50] WANG S, WEN S, CHUNG D D L. Resistance heating using electrically conductive cements[J]. Adv Cem Res, 2004, 16: 161-166.

[51] FORD S J, HWANG J H, SHANE J D, et al. Dielectric amplification in cement pastes[J]. Adv Cem Based Mater, 1997, 5(2): 41-48.

[52] COVERDALE R T, GARBOCZI E J, JENNINGS H M, et al. Computer simulation of impedance spectroscopy in two dimensions: Application to cement paste[J]. J Am Ceram Soc, 1993, 76(6): 1513-1520.

[53] WANG A D, CHUNG D D L. Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions[J]. Carbon, 2014, 72: 135-151.

[54] BHATTACHARYA S, SACHDEV V K, CHATTERJEE R, et al. Decisive properties of graphite-filled cement composites for device application[J]. Appl Phys A, 2008, 92(2): 417-420.

[55] SACHDEV V K, SHARMA S K, BHATTACHARYA S, et al. Electromagnetic shielding performance of graphite in cement matrix for applied application[J]. Adv Mater Lett, 2015, 6(11): 965-972.

[56] HADDAD A S, CHUNG D D L. Decreasing the electric permittivity of cement by graphite particle incorporation[J]. Carbon, 2017, 122: 702-709.

[57] 孙云龙, 李忠华, 索长友. 电导非线性对HVDC电缆绝缘空间电荷动态过程的影响[J]. 电机与控制学报, 2019, 23(7): 27-37.

[58] 查俊伟, 田娅娅, 刘雪洁, 等. 本征型耐高温聚酰亚胺储能电介质研究进展[J]. 高电压技术, 2021, 47(5): 1759-1770.

[59] GUIHARD V, TAILLADE F, BALAYSSAC J P, et al. Permittivity measurement of cementitious materials with an open-ended coaxial probe[J]. Constr Build Mater, 2020, 230: 116946.

[60] 黄威, 王轩, 李永清, 等. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051.

[61] WU Y H, HAN M G, LIU T, et al. Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes[J]. J Appl Phys, 2015, 118(2): 023902.

[62] CHUNG D D L, XI X. A review of the colossal permittivity of electronic conductors, specifically metals and carbons[J]. Mater Res Bull, 2022, 148: 111654.

[63] PENG Y Z, GONG F Y, WANG Z, et al. Experimental study on time-dependent dc resistivity of cement-based material considering microstructure and ion concentration[J]. Constr Build Mater, 2023, 363: 129830.

[64] WANG M, CHUNG D D L. High electric permittivity of polymer-modified cement due to the capacitance of the interface between polymer and cement[J]. J Mater Sci, 2018, 53(10): 7199-7213.

[65] DONG W K, LI W G, VESSALAS K, et al. Piezoresistivity deterioration of smart graphene nanoplate/cement-based sensors subjected to sulphuric acid attack[J]. Compos Commun, 2021, 23: 100563.

[66] LIU L Y, XU J X, YIN T J, et al. Improved conductivity and piezoresistive properties of Ni-CNTs cement-based composites under magnetic field[J]. Cem Concr Compos, 2021, 121: 104089.

[67] WANG H, ZHANG A L, ZHANG L C, et al. Electrical and piezoresistive properties of carbon nanofiber cement mortar under different temperatures and water contents[J]. Constr Build Mater, 2020, 265: 120740.

[68] AMANI N, VIPULANANDAN C, PLANK J. Monitoring the hydration and strength development in piezoresistive cement admixed with superplasticizer and retarder additives[J]. J Petroleum Sci Eng, 2020, 195: 107601.

[69] DONG W K, LI W G, GUO Y P, et al. Mechanical properties and piezoresistive performances of intrinsic graphene nanoplate/cement- based sensors subjected to impact load[J]. Constr Build Mater, 2022, 327: 126978.

[70] DONG W K, LI W G, GUO Y P, et al. Piezoresistive performance of hydrophobic cement-based sensors under moisture and chloride-rich environments[J]. Cem Concr Compos, 2022, 126: 104379.

[71] LUO J L, KWOK L C, LI Q Y, et al. Piezoresistive properties of cement composites reinforced by functionalized carbon nanotubes using photo-assisted Fenton[J]. Smart Mater Struct, 2017, 26(3): 035025.

[72] COPPOLA L, BUOSO A, CORAZZA F. Electrical properties of carbon nanotubes cement composites for monitoring stress conditions in concrete structures[J]. Appl Mech Mater, 2011, 82: 118-123.

[73] CHUNG D D L, XI X. Electric poling of carbon fiber with and without nickel coating[J]. Carbon, 2020, 162: 25-35.

[74] XI X, OZTURK M, CHUNG D D L. DC electric polarization of cured cement paste being unexpectedly hindered by free water[J]. J Am Ceram Soc, 2022, 105(2): 1074-1082.

[75] XI X, CHUNG D D L. Dielectric behavior of graphite, with assimilation of the AC permittivity, DC polarization and DC electret[J]. Carbon, 2021, 181: 246-259.

[76] YANG W Y, CHUNG D D L. First report of the ferroelectric behavior of a metal, as shown for solder[J]. J Mater Sci: Mater Electron, 2021, 32(12): 16979-16989.

[77] XI X, CHUNG D D L. Electret behavior of unpoled carbon fiber with and without nickel coating[J]. Carbon, 2020, 159: 122-132.

[78] XI X, CHUNG D D L. Electret behavior of carbon fiber structural composites with carbon and polymer matrices, and its application in self-sensing and self-powering[J]. Carbon, 2020, 160: 361-389.

[79] XI X, CHUNG D D L. Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering[J]. Carbon, 2019, 150: 531-548.

[80] CHUNG D D L, DUONG D Q. Observation of electric polarization continuity in graphite[J]. Mater Chem Phys, 2023, 297: 127357.

[81] WEN S H, CHUNG D D L. Electric polarization in carbon fiber-reinforced cement[J]. Cem Concr Res, 2001, 31(1): 141-147.

[82] HUANG L M, TANG L P, LFGREN I, et al. Real-time monitoring the electrical properties of pastes to map the hydration induced microstructure change in cement-based materials[J]. Cem Concr Compos, 2022, 132: 104639.

[83] LEE N K, TAFESSE M, LEE H K, et al. Electrical resistivity stability of CNT/cement composites after further hydration: A simple evaluation with an accelerated method[J]. Constr Build Mater, 2022, 317: 125830.

[84] FARQAD Y, WEI X S. Early strength development and hydration of cement pastes at different temperatures or with superplasticiser characterised by electrical resistivity[J]. Case Stud Constr Mater, 2022, 16: e00911.

[85] 何丽, 陈庆, 蒋正武. 基于水化进程的硬化水泥浆体电导率动态计算模型[J]. 建筑材料学报, 2022, 25(1): 1-7.

[86] 赵树青, 董春晖, 宋元金. 含水量对碳纤维水泥砂浆导电性能影响的试验研究[J]. 公路, 2020, 65(10): 303-305.

[87] HU A, FANG Y H, YOUNG J F, et al. Humidity dependence of apparent dielectric constant for DSP cement materials at high frequencies[J]. J Am Ceram Soc, 1999, 82(7): 1741-1747.

[88] GU P, BEAUDOIN J J. Dielectric behaviour of hardened cement paste systems[J]. J Mater Sci Lett, 1996, 15(2): 182-184.

[89] 窦占明, 肖文荣, 赵小榕, 等. Mn掺杂对0.77NaNbO3-0.23BaTiO3铁电陶瓷电卡性能的影响[J]. 硅酸盐学报, 2022, 50(12): 3199-3205.

[90] 倪波, 张晓燕, 甄茹, 等. A位无序高熵钙钛矿氧化物的介电及铁电性能[J]. 硅酸盐学报, 2022, 50(6): 1475-1480.

[91] 杨利, 陈超, 江向平, 等. 相界附近结构演化及淬火对BiFeO3-BaTiO3压电陶瓷结构与电学性能的影响[J]. 硅酸盐学报, 2022, 50(6): 1533-1541.

[92] LIU R, GU C, TIAN X, et al. Temperature dependent scaling behavior of 0.67PMN-0.33PT relaxor ferroelectric ceramics[J]. Ceram Int, 2022, 48: 22411-22416.

[93] RIANYOI R, POTONG R, JAITANONG N, et al. Dielectric and ferroelectric properties of 1-3 Barium titanate-Portland cement composites[J]. Curr Appl Phys, 2011, 11(3): S48-S51.

[94] CHUNG D D L, XI X. Electric poling of carbon fiber with and without nickel coating[J]. Carbon, 2020, 162: 25-35.

[95] XI X, CHUNG D D L. Dynamics of the electric polarization and depolarization of graphite[J]. Carbon, 2021, 172: 83-95.

[96] WEN S, CHUNG D D L. The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement[J]. Carbon, 2006, 44: 2130-2138.

[97] 王聪聪, 杜红秀, 石丽娜, 等. 碳纤维-钢纤维水泥基复合材料电学性能试验研究[J]. 硅酸盐通报, 2022, 41(8): 2690-2705.

[98] 左俊卿, 房霆宸, 廖刚. CNT-CF/水泥基材料导电性能研究[J]. 硅酸盐通报, 2019, 38(12): 3922-3926.

[99] 蔡红雷, 闫晓鑫, 张安江, 等. CB/CNTs/PP导电高聚物力/温度作用下介电性能的研究[J]. 功能材料, 2019, 50(11): 11024-11029.

[100] AGARWAL P, ORAZEM M E, GARCIA-RUBIO L H. Application of measurement models to impedance spectroscopy: III. evaluation of consistency with the Kramers-Kronig relations[J]. J Electrochem Soc, 1995, 142(12): 4159-4168.

[101] HUBBARD J B. Friction on a rotating dipole[J]. J Chem Phys, 1978, 69(3): 1007-1009.

[102] LEWIS T J. Interfaces: nanometric dielectrics[J]. J Phys D: Appl Phys, 2005, 38(2): 202-212.

[103] CHUNG D. Review: Improving cement-based materials by using silica fume[J]. J Mater Sci, 2002, 37: 673-682.

[104] FALLAH-VALUKOLAEE S, MOUSAVI R, ARJOMANDI A, et al. A comparative study of mechanical properties and life cycle assessment of high-strength concrete containing silica fume and nanosilica as a partial cement replacement[J]. Structures, 2022, 46: 838-851.

[105] 钟伟荣, 贺伟荣, 史美伦, 等. 混凝土矿物掺合料活性的阻抗谱研究[J]. 粉煤灰, 2006, 18(4): 18-19.

[106] 史美伦, 张雄, 李平江, 等. 胶凝材料的组成、力学性能与交流阻抗谱的关系[J]. 硅酸盐通报, 1999, 18(4): 14-17.

[107] 张震雷, 史美伦. 混凝土中矿物掺和料水合机理的交流阻抗研究[J]. 建筑材料学报, 2006, 9(3): 366-369.

[108] 张震雷, 史美伦. 交流阻抗谱表征磨细矿渣胶凝活性的研究[J]. 建筑材料学报, 2005, 8(5): 583-585.

[109] 李平江, 史美伦, 陈志源. 粉煤灰细度与其火山灰活性的关系[J]. 建筑材料学报, 2004, 7(2): 207-209.

[110] CHUNG D D L. Use of polymers for cement-based structural materials[J]. J Mater Sci, 2004, 39(9): 2973-2978.

[111] 张璐, 毛倩瑾, 伍文文, 等. 吸水性微胶囊界面修饰提高水泥基材料抗渗性研究[J]. 硅酸盐通报, 2022, 41(8): 2663-2671.

[112] 刘加平, 刘建忠, 韩方玉, 等. 基于钢-混凝土组合结构轻量化的粗骨料超高性能混凝土研究进展与应用[J]. 建筑结构学报, 2022, 43(9): 36-44.

[113] CAO J Y, CHUNG D D L. Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement[J]. Cem Concr Res, 2004, 34(3): 481-485.

[114] WEN S H, CHUNG D D L. Pyroelectric behavior of cement-based materials[J]. Cem Concr Res, 2003, 33(10): 1675-1679.

[115] WANG Y L, CHUNG D D L. Effect of the fringing electric field on the apparent electric permittivity of cement-based materials[J]. Compos B Eng, 2017, 126: 192-201.

[116] 刘雅琦, 王淑娟, 李立新. 高炉镍铁渣和钢纤维改性混凝土的耐热性和热损伤规律[J]. 硅酸盐通报, 2021, 40(7): 2320-2330.

[117] 赵宁, 乔双, 马雯, 等. 热释电材料性能及应用研究进展[J]. 稀有金属, 2022, 46(9): 1225-1234.

[118] LEE J, KIM H J, KO Y J, et al. Enhanced pyroelectric conversion of thermal radiation energy: Energy harvesting and non-contact proximity sensor[J]. Nano Energy, 2022, 97: 107178.

[119] SHI Z Q, CHUNG D D L. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion[J]. Cem Concr Res, 1999, 29(3): 435-439.

[120] CHUNG D D L, XI X. Piezopermittivity for capacitance-based strain/stress sensing[J]. Sens Actuat A Phys, 2021, 332: 113028.

[121] 胡鹏兵, 陈娟, 孙航, 等. 基于压电陶瓷的地聚合物砂浆强度发展监测研究[J]. 硅酸盐通报, 2021, 40(9): 2905-2910.

[122] 徐先洋, 钱霖, 张峰, 等. 1-3型水泥基压电复合材料在冲击载荷下的电学响应[J]. 压电与声光, 2017, 39(3): 433-436.

[123] PAN H H, GUAN J C. Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor[J]. Constr Build Mater, 2022, 324: 126685.

[124] FU X L, MA E M, CHUNG D D L, et al. Self-monitoring in carbon fiber reinforced mortar by reactance measurement[J]. Cem Concr Res, 1997, 27(6): 845-852.

[125] WEN S H, CHUNG D D L. Cement-based materials for stress sensing by dielectric measurement[J]. Cem Concr Res, 2002, 32(9): 1429-1433.

[126] WEN S H, CHUNG D D L. Piezoelectric cement-based materials with large coupling and voltage coefficients[J]. Cem Concr Res, 2002, 32(3): 335-339.

[127] WANG S D, LU L C, CHENG X. Effect of ultra-fine fly ash on the dielectric behavior of CFSC under stress[J]. Adv Mater Lett, 2012, 2(1): 12-16.

[128] CHUNG D D L. First review of capacitance-based self-sensing in structural materials[J]. Sens Actuators A, 2023, 354: 114270.

[129] CHUNG D D L. A critical review of electrical-resistance-based self-sensing in conductive cement-based materials[J]. Carbon, 2023, 203: 311-325.

席翔, 储洪强, 冉千平, 张文一, 蒋林华, CHUNG D.D.L.. 通用硅酸盐水泥基材料低频介电性能的研究进展[J]. 硅酸盐学报, 2023, 51(8): 2074. XI Xiang, CHU Hongqiang, RAN Qianping, ZHANG Wenyi, JIANG Linhua, CHUNG D.D.L.. Low-Frequency Dielectric Behavior of Common Portland Cement-Based Materials: A Review[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2074.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!