激光生物学报, 2023, 32 (5): 0393, 网络出版: 2024-01-27  

光生物调节疗法对细菌的双向调节作用的研究进展

Research Progress on Bidirectional Regulation of Photobiomodulation Therapy on Bacteria
作者单位
中国医学科学院生物医学工程研究所, 天津 300192
摘要
非侵入性激光照射可以诱导细胞和组织的光生物调节效应。光生物调节(PBM)应用广泛, 特别是在抗微生物感染和改善炎症方面有着很好的效果。然而, 研究发现, PBM对细菌和炎症有双向调节现象, 抗菌-促菌和抑炎-促炎在不同的试验条件下会发生变化。近些年来, PBM的临床应用受到越来越多的关注, 特别是在抗菌领域, 因为它是一种无创的策略, 禁忌症少。然而, 由于双向调节效应, 研究人员仍然对PBM的应用方式存疑, 必须根据其临床应用进行光照波长、剂量等参数的修改。因此, 本文总结了PBM对细菌的双向调节效应, 分析了这种双向调节效应产生的影响因素及其分子机制。PBM对细菌的双向调节作用受光照波长、剂量、细菌类别及细菌状态的影响。更好地了解低强度激光治疗中双向剂量反应的程度能够探索PBM使用的最可靠机制, 并最终使各种疾病患者的治疗标准化, 这对于优化临床治疗是必要的。此外, 研究人员对PBM双向调节机制的合理利用使其可以达到促进或抑制细菌生长的作用, 这在微生物制造、菌群调节、改善和治疗疾病等领域有广阔的应用前景。
Abstract
Non-invasive laser irradiation can induce photobiomodulation of cells and tissues. Photobiomodulation (PBM) is widely used, especially in antimicrobial infection and improving inflammation. However, studies have found that PBM has a bidirectional regulation of bacteria and inflammation. Antibacterial and pro-bacterial, anti-inflammatory and pro-inflammatory will change under different experimental conditions. In recent years, the clinical applications of PBM have received more and more attentions, especially in the field of antibacterial, because it is a noninvasive strategy with few contraindications. However, due to the bidirectional regulatory effect, researchers still have doubts about the application mode of PBM, and the parameters such as light wavelength and dose must be modified according to its clinical application. Therefore, this paper summarizes the bidirectional regulation effects of PBM on bacteria, and analyzes the influencing factors and molecular mechanism of this bidirectional regulation effect. The bidirectional regulation effect of PBM on bacteria is affected by light wavelength, dose, bacterial category and bacterial state. A better understanding of the degree of bidirectional dose-response in low-intensity laser therapy is necessary to optimize clinical treatment. It can also help explore the most reliable mechanism of PBM use and ultimately standardize the treatment of patients with various diseases. In addition, rational use of the bidirectional regulation mechanism of PBM can promote or inhibit the growth of bacteria, which has broad application prospects in the fields of microbial manufacturing, flora regulation, improvement and treatment of diseases.
参考文献

[1] STRACY M, SNITSER O, YELIN I, et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections [J]. Science (New York, NY), 2022, 375(6583): 889-894.

[2] HANNA R, DALVI S, S?L?GEAN T, et al. Phototherapy as a rational antioxidant treatment modality in COVID-19 management; new concept and strategic approach: critical review [J]. Antioxidants (Basel, Switzerland), 2020, 9(9): 875.

[3] ARANY P R. Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges [J]. Journal of Dental Research, 2016, 95(9): 977-984.

[4] CARROLL J D, MILWARD M R, COOPER P R, et al. Developments in low level light therapy (LLLT) for dentistry [J]. Dental materials: Official Publication of the Academy of Dental Materials, 2014, 30(5): 465-475.

[5] ASSIS L, MORETTI A I, ABRAH?O T B, et al. Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion [J]. Lasers in Surgery and Medicine, 2012, 44(9): 726-735.

[6] ANDERS J J, LANZAFAME R J, ARANY P R. Low-level light/laser therapy versus photobiomodulation therapy [J]. Photomedicine and Laser Surgery, 2015, 33(4): 183-184.

[7] LEE J H, CARPENA N T, KIM S, et al. Photobiomodulation at a wavelength of 633?nm leads to faster functional recovery than 804?nm after facial nerve injury [J]. Journal of Biophotonics, 2021, 14(10): e202100159.

[8] KASOWANJETE P, ABRAHAMSE H, HOURELD N N. Photobiomodulation at 660 nm stimulates in vitro diabetic wound healing via the Ras/MAPK pathway [J]. Cells, 2023, 12(7): 1080.

[9] SERT G, KUCUKGUVEN A, ZIRH E B, et al. Photobiomodulation with polychromatic light (600~1 200?nm) improves fat graft survival by increasing adipocyte viability, neovascularization, and reducing inflammation in a rat model [J]. Lasers in Surgery and Medicine, 2022, 54(2): 268-280.

[10] YARAL ?EVIK Z B, KARAMAN O, TOPALO?LU N. Photobiomodulation therapy at red and near-infrared wavelengths for osteogenic differentiation in the scaffold-free microtissues [J]. Journal of Photochemistry and Photobiology B, Biology, 2023, 238: 112615.

[11] LIPKO N B. Photobiomodulation: evolution and adaptation[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(4): 213-233.

[12] ZECHA J A, RABER-DURLACHER J E, NAIR R G, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations [J]. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer, 2016, 24(6): 2781-2792.

[13] RAMOS L, MARCOS R L, TORRES-SILVA R, et al. Characterization of skeletal muscle strain lesion induced by stretching in rats: effects of laser photobiomodulation [J]. Photomedicine and Laser Surgery, 2018, 36(9): 460-467.

[14] ALIODOUST M, BAYAT M, JALILI M R, et al. Evaluating the effect of low-level laser therapy on healing of tentomized Achilles tendon in streptozotocin-induced diabetic rats by light microscopical and gene expression examinations [J]. Lasers in Medical Science, 2014, 29(4): 1495-1503.

[15] HEISKANEN V, HAMBLIN M R. Photobiomodulation: lasers vs. light emitting diodes? [J]. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2018, 17(8): 1003-1017.

[16] RUPEL K, ZUPIN L, COLLIVA A, et al. Photobiomodulation at multiple wavelengths differentially modulates oxidative stress in vitro and in vivo [J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 6510159.

[17] PEREIRA F C, PARISI J R, MAGLIONI C B, et al. Antinociceptive effects of low-level laser therapy at 3 and 8?J/cm2 in a rat model of postoperative pain: possible role of endogenous opioids [J]. Lasers in Surgery and Medicine, 2017, 49(9): 844-851.

[18] HARORLI O T, HATIPOGLU M, ERIN N. Effect of photobiomodulation on secretion of IL-6 and IL-8 by human gingival fibroblasts in vitro [J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37(8): 457-464.

[19] CALABRESE E J, IAVICOLI I, CALABRESE V. Hormesis: its impact on medicine and health [J]. Human & Experimental Toxicology, 2013, 32(2): 120-152.

[20] AGRAWAL T, GUPTA G K, RAI V, et al. Pre-conditioning with low-level laser (light) therapy: light before the storm [J]. Dose-response: a Publication of International Hormesis Society, 2014, 12(4): 619-649.

[21] HAWKINS D, ABRAHAMSE H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts [J]. Photomedicine and Laser Surgery, 2006, 24(6): 705-714.

[22] CHOW R T, HELLER G Z, BARNSLEY L. The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study [J]. Pain, 2006, 124(1/2): 201-210.

[23] NIE F, HAO S, JI Y, et al. Biphasic dose response in the anti-inflammation experiment of PBM [J]. Lasers in Medical Science, 2023, 38(1): 66.

[24] LI Y, XU Q, SHI M, et al. Low-level laser therapy induces human umbilical vascular endothelial cell proliferation, migration and tube formation through activating the PI3K/Akt signaling pathway [J]. Microvascular Research, 2020, 129: 103959.

[25] LEE H S, LEE Y, JEONG U, et al. Transoral low-level laser therapy via a cylindrical device to treat oral ulcers in a rodent model [J]. Lasers in Surgery and Medicine, 2020, 52(7): 647-652.

[26] DIXIT S, AHMAD I, HAKAMI A, et al. Comparison of anti-microbial effects of low-level laser irradiation and microwave diathermy on gram-positive and gram-negative bacteria in an in vitro model [J]. Medicina (Kaunas, Lithuania), 2019, 55(7): 330.

[27] GUFFEY J S, WILBORN J. In vitro bactericidal effects of 405-nm and 470-nm blue light [J]. Photomedicine and Laser Surgery, 2006, 24(6): 684-688.

[28] LIPOVSKY A, NITZAN Y, FRIEDMANN H, et al. Sensitivity of Staphylococcus aureus strains to broadband visible light [J]. Photochemistry and Photobiology, 2009, 85(1): 255-260.

[29] NUSSBAUM E L, LILGE L, MAZZULLI T. Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light [J]. Lasers in Surgery and Medicine, 2002, 31(5): 343-351.

[30] NUSSBAUM E L, LILGE L, MAZZULLI T. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1~50 J/cm2 on three species of bacteria in vitro [J]. Journal of Clinical Laser Medicine & Surgery, 2002, 20(6): 325-333.

[31] DADRAS S, MOHAJERANI E, EFTEKHAR F, et al. Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro [J]. Current Microbiology, 2006, 53(4): 282-286.

[32] LIPOVSKY A, NITZAN Y, GEDANKEN A, et al. Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing [J]. Lasers in Surgery and Medicine, 2010, 42(6): 467-472.

[33] BASSO F G, OLIVEIRA C F, FONTANA A, et al. In vitro effect of low-level laser therapy on typical oral microbial biofilms [J]. Brazilian Dental Journal, 2011, 22(6): 502-510.

[34] SONG H H, LEE J K, UM H S, et al. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens [J]. Journal of Periodontal & Implant Science, 2013, 43(2): 72-78.

[35] DE SOUSA N T, GOMES R C, SANTOS M F, et al. Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers [J]. Lasers in Medical Science, 2016, 31(3): 549-556.

[36] MIN S H, KWON J, DO E J, et al. Duodenal dual-wavelength photobiomodulation improves hyperglycemia and hepatic parameters with alteration of gut microbiome in type 2 diabetes animal model [J]. Cells, 2022, 11(21): 3490.

[37] SHIRTLIFF M E, PETERS B M, JABRA-RIZK M A. Cross-kingdom interactions: Candida albicans and bacteria [J]. FEMS Microbiology Letters, 2009, 299(1): 1-8.

[38] KARU T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells [J]. Journal of Photochemistry and Photobiology B, Biology, 1999, 49(1): 1-17.

[39] DE FREITAS L F, HAMBLIN M R. Proposed mechanisms of photobiomodulation or low-level light therapy [J]. IEEE Journal of Selected Topics in Quantum Electronics: a Publication of the IEEE Lasers and Electro-optics Society, 2016, 22(3): 7000417.

[40] SUSKI J M, LEBIEDZINSKA M, BONORA M, et al. Relation between mitochondrial membrane potential and ROS formation [J]. Methods in Molecular Biology (Clifton, NJ), 2012, 810: 183-205.

[41] ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release [J]. Physiological Reviews, 2014, 94(3): 909-950.

[42] ZOROV D B, FILBURN C R, KLOTZ L O, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes [J]. The Journal of Experimental Medicine, 2000, 192(7): 1001-1014.

[43] ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial ROS-induced ROS release: an update and review [J]. Biochimica et Biophysica Acta, 2006, 1757(5/6): 509-517.

[44] CHEN A C-H, HUANG Y Y, ARANY P R, et al. Role of reactive oxygen species in low level light therapy[C]//Mechanisms for Low-Light Theray Ⅳ, San Jose: SPIE BIOS, 2009: 716502.

[45] SUN X, WU S, XING D. The reactive oxygen species-Src-Stat3 pathway provokes negative feedback inhibition of apoptosis induced by high-fluence low-power laser irradiation [J]. The FEBS Journal, 2010, 277(22): 4789-4802.

[46] HUANG L, WU S, XING D. High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3β signaling pathway [J]. Journal of Cellular Physiology, 2011, 226(3): 588-601.

[47] ZHANG L, ZHANG Y, XING D. LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3beta-inactivation mechanism [J]. Journal of Cellular Physiology, 2010, 224(1): 218-228.

[48] SHARMA S K, KHARKWAL G B, SAJO M, et al. Dose response effects of 810 nm laser light on mouse primary cortical neurons [J]. Lasers in Surgery and Medicine, 2011, 43(8): 851-859.

[49] ESPADA J, CARRASCO E, CALVO-SáNCHEZ M I, et al. Stimulation of stem cell niches and tissue regeneration in mouse skin by switchable protoporphyrin IX-dependent photogeneration of reactive oxygen species in situ [J]. Journal of Visualized Experiments: JoVE, 2020, (159): e60859.

[50] WERNER E, ROE F, BUGNICOURT A, et al. Stratified growth in Pseudomonas aeruginosa biofilms [J]. Applied and Environmental Microbiology, 2004, 70(10): 6188-6196.

[51] LYU Y, CHEN Z, YANG Z, et al. Evaluation of the red & blue LED effects on cutaneous refractory wound healing in male Sprague-Dawley rat using 3 different multi-drug resistant bacteria [J]. Lasers in Surgery and Medicine, 2022, 54(5): 725-736.

[52] BICKNELL B, LIEBERT A, JOHNSTONE D, et al. Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases [J]. Lasers in Medical Science, 2019, 34(2): 317-327.

[53] YAO Q, YU Z, MENG Q, et al. The role of small intestinal bacterial overgrowth in obesity and its related diseases [J]. Biochemical Pharmacology, 2023, 212: 115546.

[54] NI Y, ZHANG Y, ZHENG L, et al. Bifidobacterium and Lactobacillus improve inflammatory bowel disease in zebrafish of different ages by regulating the intestinal mucosal barrier and microbiota [J]. Life Sciences, 2023, 324: 121699.

[55] QIN X, BI L, YANG W, et al. Dysbiosis of the gut microbiome is associated with histopathology of lung cancer [J]. Frontiers in Microbiology, 2022, 13: 918823.

[56] GAGNé M A, BARBEAU C, FRéGEAU G, et al. Dysbiotic microbiota contributes to the extent of acute myocardial infarction in rats [J]. Scientific Reports, 2022, 12(1): 16517.

[57] ISHII T, FURUOKA H, KAYA M, et al. Oral administration of probiotic bifidobacterium breve improves facilitation of hippocampal memory extinction via restoration of aberrant higher induction of neuropsin in an MPTP-induced mouse model of Parkinson’s disease [J]. Biomedicines, 2021, 9(2): 167.

[58] CHEN Q, WU J, DONG X, et al. Gut flora-targeted photobiomodulation therapy improves senile dementia in an A beta-induced Alzheimer’s disease animal model [J]. Journal of Photochemistry and Photobiology B, Biology, 2021, 216: 112152.

[59] PAN H, SUN T, CUI M, et al. Light-sensitive Lactococcus lactis for microbe-gut-brain axis regulating via upconversion optogenetic micro-nano system [J]. ACS Nano, 2022, 16(4): 6049-6063.

吕越, 阴慧娟. 光生物调节疗法对细菌的双向调节作用的研究进展[J]. 激光生物学报, 2023, 32(5): 0393. LYU Yue, YIN Huijuan. Research Progress on Bidirectional Regulation of Photobiomodulation Therapy on Bacteria[J]. Acta Laser Biology Sinica, 2023, 32(5): 0393.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!