Minghui Li 1,2Renhong Gao 1,2Chuntao Li 3,4Jianglin Guan 3,4[ ... ]Ya Cheng 1,2,3,6,7,**
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
5 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
6 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
7 Hefei National Laboratory, Hefei 230088, China
We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate (TFLN). The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching. Thanks to the erbium-ytterbium co-doping providing high optical gain, the ultralow loss nanostructuring, and the excitation of high-Q coherent polygon modes, which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes, single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold, under a 980-nm-band optical pump. The threshold was measured as low as 1 µW, which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers. The conversion efficiency reaches 4.06 × 10-3, which is also the highest value reported in single-mode active TFLN microlasers.
lithium niobate microcavities microdisk lasers 
Chinese Optics Letters
2024, 22(4): 041301
汪旻 1,2乔玲玲 3方致伟 1,2林锦添 3[ ... ]程亚 1,3,*
作者单位
摘要
1 华东师范大学物理与电子科学学院极端光机电实验室,上海 200241
2 华东师范大学纳光电集成与先进装备教育部工程研究中心,上海 200241
3 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
光子集成器件以极低的成本和功耗实现覆盖从光源、调制、非线性频率转换、光放大到光探测的全功能单片集成,对光电信息处理系统产生显著而深远的影响,并推动一系列诸如高速通信、人工智能、量子信息,以及精密测量等重大应用领域的持续发展。近年来,铌酸锂薄膜光子器件得益于离子揭膜技术和微纳刻蚀工艺的进步,以宽的工作窗口、低的传输损耗、大的调制带宽、高的非线性光学转换效率和兼容大规模光子集成等优点,在集成光子学领域占据重要一席之地。本文介绍了利用超快激光光刻结合化学机械抛光技术在掺杂有源发光稀土离子的铌酸锂薄膜衬底上实现片上激光与光放大的最新进展,包括在波导放大器中实现了超过20 dB的最大内部净增益,并且在高品质铌酸锂微盘中演示了具有454.7 Hz窄线宽的电光可调谐单频激光器,演示了单片集成的电驱动微环激光器,以及连续光刻方式实现的无源/有源混合集成器件。
集成光学 超快激光加工 铌酸锂 光放大器 光源 稀土掺杂材料 
光学学报
2023, 43(16): 1623014
Renhong Gao 1,6Ni Yao 2Jianglin Guan 3,4Li Deng 3,4[ ... ]Ya Cheng 1,3,4,6,7,8,9,**
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
3 XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
5 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
7 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
8 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
9 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
We demonstrate integrated lithium niobate (LN) microring resonators with Q factors close to the intrinsic material absorption limit of LN. The microrings are fabricated on pristine LN thin-film wafers thinned from LN bulk via chemo-mechanical etching without ion slicing and ion etching. A record-high Q factor up to 108 at the wavelength of 1550 nm is achieved because of the ultra-smooth interface of the microrings and the absence of ion-induced lattice damage, indicating an ultra-low waveguide propagation loss of 0.0034 dB/cm. The ultra-high Q microrings will pave the way for integrated quantum light source, frequency comb generation, and nonlinear optical processes.
lithium niobate microcavities waveguide 
Chinese Optics Letters
2022, 20(1): 011902
乔玲玲 1汪旻 2伍荣波 1,3方致伟 2[ ... ]程亚 1,2,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 华东师范大学物理与电子科学学院极端光机电实验室, 上海 200241
3 中国科学院大学, 北京 100049
铌酸锂光子集成是推动未来高速光通信和光信息处理领域变革性发展的重要前沿技术。介绍了利用铌酸锂光子芯片制造技术制备集成光路中关键光子结构与器件的最新研究进展。得益于单晶铌酸锂晶体的高非线性系数和强电光效应,利用制备的高性能铌酸锂光子器件演示了多种高效的非线性光学过程。
光学器件 铌酸锂 飞秒激光 微谐振腔 光波导 光损耗 集成光路 
光学学报
2021, 41(8): 0823012
乔玲玲 1,*储蔚 1,2,*王哲 1,3程亚 1,2,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 华东师范大学物理与材料科学学院极端光机电实验室, 上海 200241
3 上海科技大学物质科学与技术学院, 上海 200031
飞秒激光脉冲加工具有热效应小、加工精度突破衍射极限、三维内部加工能力等特性,在微纳制备领域独具优势。综述了利用飞秒激光脉冲整形技术结合飞秒激光三维直写进行透明介质中微纳制备的最新进展,这些技术有望在新型集成光学和微纳光学中发挥重要的作用。
物理光学 光学器件 飞秒激光 脉冲整形 微加工 
光学学报
2019, 39(1): 0126012
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
The investigation of nonlinear optical characteristics of ethanol solution doped with silver nanoparticles is presented. A large thermal-induced third-order nonlinear refractive index up to –1.941×10?7 cm2/W is obtained from the mixed solution under 488-nm continue wave (CW) laser irradiation, which may result from surface plasmon resonance (SPR) enhancement effect of silver nanoparticles as well as high thermo-optic coefficient and low thermal conductivity of ethanol. Obvious spatial self-phase modulation and influence of thermal-induced negative lens effect are observed when a beam propagates through this solution, indicating promising applications such as optical limiting, beam flattening, and so on.
非线性光学 表面等离子体共振 纳米银颗粒 z-scan扫描技术 190.0190 Nonlinear optics 160.4330 Nonlinear optical materials 160.4236 Nanomaterials 240.6680 Surface plasmons 
Chinese Optics Letters
2009, 7(10): 949

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!