朱恒亮 1,2宋芳 1,2,*张馨予 1,2郑传涛 1,2王一丁 1,2
作者单位
摘要
1 吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室吉林大学实验区,长春 130012
2 吉林省红外气体传感技术工程研究中心,长春 130012
红外光谱技术因分子吸收截面较小限制了其灵敏度,采用光学性质相似且价格更低的银阵列替代金阵列,在节约成本的同时,利用表面增强红外吸收效应,以提高微量分析物的检测灵敏度。分别设计了微米尺度的中空十字形与六边形天线阵列结构,使用时域有限差分算法进行数值仿真,研究了天线尺寸对超表面光学性能的影响。利用紫外曝光技术,以银作为沉积金属,实现低成本、大尺寸天线阵列的制备。利用傅里叶红外光谱仪测量超表面基底,在400~800 cm-1的中红外波段实现了表面增强吸收,十字形天线与六边形天线结构的消光系数最高分别可达20%与24.5%。为了评估超表面的传感性能,分别在硅基底和六边形结构的超表面基底上涂覆聚甲基丙烯酸甲酯,六边形天线结构在483.14 cm-1处实现了2.85倍的增强吸收,增强因子为1 995。
红外光谱 表面等离激元 表面增强红外 天线阵列 超表面 Infrared spectroscopy Surface plasmons Surface enhanced infrared Antenna arrays Metasurface 
光子学报
2023, 52(10): 1052402
作者单位
摘要
1 大连理工大学光电工程与仪器科学学院,辽宁 大连 116024
2 河北工程大学数理科学与工程学院,河北 邯郸 056038
光声光谱技术作为一种超高灵敏度的气体检测技术,声波传感器作为核心部件直接影响着系统的体积和检测极限。传统光声光谱技术使用电容式麦克风作为声波探测单元,但该器件的电学特性易受到高温环境和电磁干扰影响。在全光学光声光谱系统中,利用光学声波传感器对光声信号进行探测,避免了电子探测元件的使用,具有环境适应性强、灵敏度高等优点,且系统中全光学的设计可以极大地减小光声传感单元的体积。综述了基于干涉型光学声波传感器的全光学光声光谱气体传感技术的研究进展,并展望了其未来的发展方向。
光谱学 光声光谱 全光学设计 气体检测 光纤声波传感 
光学学报
2023, 43(18): 1899911
作者单位
摘要
1 天津工业大学电子与信息工程学院,天津300384
2 天津环鑫科技发展有限公司,天津300384
垂直双扩散金属-氧化物半导体场效应晶体管(VDMOS)器件是一种以多子为载流子的器件,具有开关速度快、开关损耗小、输入阻抗高、工作频率高以及热稳定性好等特点。提出一款60 V 平面栅VDMOS 器件的设计与制造方法,开发出一种新结构方案,通过减少一层终端层版图的光刻,将终端结构与有源区结构结合在一张光刻版上,并在终端工艺中设计了一种改善终端耐压的钝化结构,通过使用聚酰亚胺光刻胶(PI)钝化工艺代替传统的氮化硅钝化层。测试结果表明产品满足设计要求,以期为其他规格的芯片设计提供一种新的设计思路。
功率器件 垂直双扩散金属-氧化物半导体场效应晶体管(VDMOS) 终端结构 击穿电压 钝化工艺 power device Vertical Double-diffused Metal Oxide Semiconductor terminal structure breakdown voltage passivation process 
太赫兹科学与电子信息学报
2022, 20(4): 402
作者单位
摘要
电子科技大学 自动化工程学院, 四川 成都 611731
石英晶体微天平(QCM)是一种高灵敏度的传感器, 通过建立QCM参数变化与被测粘弹性薄膜之间的关系, 可以对其进行量化分析及表征。该文基于石英晶体本构方程, 推导了在气相条件下, 不考虑电容效应的粘弹性薄膜吸附的QCM等效BVD模型, 给出了一个关于粘弹性薄膜物理性质的QCM等效参数与频率变化的显式表达, 揭示了粘弹性薄膜的损耗模量和存储模量在气相中产生“额外质量效应”的物理现象。与Arnau给出的EBVD模型相比, 该文推导的BVD模型具有更高的准确度。结果表明, 该模型可被应用于气相粘弹性薄膜的特性分析。
石英晶体微天平 等效BVD模型 粘弹性薄膜 存储模量 损耗模量 quartz crystal microbalance equivalent BVD model viscoelastic film storage modulus loss modulus 
压电与声光
2020, 42(4): 456

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!