作者单位
摘要
1 中国工程物理研究院核物理与化学研究所, 绵阳 621900
2 中国工程物理研究院流体物理研究所, 绵阳 621900
Na0.5K0.5NbO3是一种不含铅的新型压电材料。理解该物质在高压下的晶体结构变化, 有助于深入认识并提高其材料的稳定性及压电性能。然而目前关于该物质在高压下的相结构演化过程还缺少实验研究。本工作采用基于金刚石对顶砧(DAC)的高压拉曼光谱技术, 研究了Na0.5K0.5NbO3的高压拉曼光谱特性与压致相变行为。研究发现Na0.5K0.5NbO3在高压环境下由于NbO6八面体的振动模式发生改变, 会依次发生正交相到四方相和四方相到立方相的可逆相变过程, 其相变压力分别为4.0~5.5 GPa和5.5~6.4 GPa。
高压拉曼光谱 压致相变 Na0.5K0.5NbO3 Na0.5K0.5NbO3 high-pressure Raman scattering pressure-induced phase transition 
光散射学报
2022, 34(3): 209
徐超文 1,*高静 4李营 1秦霏 5[ ... ]房雷鸣 6
作者单位
摘要
1 中国地震局地震预测研究所, 北京 100036
4 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室, 北京 100029
5 5. School of Earth Sciences, University of Bristol, Bristol BS81RJ, United Kingdom
6 中国工程物理研究院核物理与化学研究所, 四川 绵阳 621999
碳酸盐是碳在地球内部的重要载体之一, 其在地幔高温高压条件下的晶体化学是理解地球深部碳的赋存状态和循环过程的关键, 而结构稳定性和相变是晶体化学最基本的研究内容。 碳酸钠(Na2CO3)是一种常见的碱性碳酸盐矿物, 在产自地幔过渡带-下地幔的金刚石中已发现含钠的碳酸盐矿物包裹体, 这成为碳酸钠能够俯冲进入地幔深部的直接矿物学证据。 前人利用拉曼光谱技术研究了Na2CO3在常温常压下的晶格振动模式, 但其在高压下的稳定性和结构变化却鲜有报道。 利用金刚石压腔装置结合先进的共聚焦拉曼光谱技术, 以硅油作为传压介质, 在准静水压力条件下, 在0.001~27.53 GPa压力区间对Na2CO3粉末在600~1 200 cm-1波段的振动特征进行了细致地分析。 本次实验重点分析了[CO3]2-基团振动模式在升压和卸压过程中的行为。 结果表明, 在0.001~11.88 GPa压力范围内, [CO3]2-基团对称伸缩振动γ1(1 088.06和1 070.76 cm-1)、 反对称伸缩振动γ3(865.10和797.50 cm-1)和面内弯曲振动γ4(720.10和696.71 cm-1)都出现了振动峰的分裂。 随着压力增加, 所有振动峰都向高频率漂移, 半高宽也逐渐增加。 在13.40 GPa时, Na2CO3发生结构相变, 具体表现为690.08 cm-1处出现1条新的拉曼峰, 并且随着压力升高该峰的强度逐渐增大。 同时反对称伸缩振动峰γ3以及面内弯曲振动峰γ4的强度持续减弱, 半高宽也继续变大。 这些现象表明Na2CO3结构相变源于[CO3]2-内部晶格变化。 当压力卸载到4.18 GPa时, [CO3]2-的振动模式与常温常压下的完全吻合, 相变出现的新峰也已经消失, 表明该相变是由[CO3]2-基团畸变引起的并且具有可逆性。 继续升压至27.53 GPa, 拉曼光谱继续蓝移, Na2CO3的拉曼谱线再没有变化, 说明高压相在这一压强范围内保持稳定。 在整个加压过程中, 反对称伸缩振动γ3和面内弯曲振动γ4处的拉曼峰出现强度减弱现象。 同时也计算了各个峰频率对压力的依赖系数dγ/dP, 结果显示[CO3]2-基团内各个振动模式对压力的响应是不同的, 这很可能与C—O键的键长有关。 最后, 对比发现, 对称伸缩振动γ1峰的强度比反对称伸缩振动γ3和面内弯曲振动γ4峰的强度大, 并且[CO3]2-基团对称伸缩振动γ1受压力影响相对较小, 可以用来区别不同种类的碳酸盐矿物。
碳酸钠 拉曼散射 高压 相变 Sodium carbonate Raman scattering High pressure Phase transition 
光谱学与光谱分析
2021, 41(7): 2087
作者单位
摘要
1 四川大学原子与分子物理研究所, 四川 成都 610065
2 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083
3 中国工程物理研究院核物理与化学研究所, 四川 绵阳 621900
β-镓酸盐(β-gallate)型化合物是一种非常有应用前景的固态离子导体, 在储能领域具有重要的应用价值。 该类型化合物导电层中往往可以容纳过量的碱金属离子, 使得该体系体现出复杂的晶格动力学行为, 这也为进一步理解其导电机制带来了困难。 压力与温度两个参量均可以通过改变原子间的间距而影响材料的结构, 在研究材料的动力学过程, 尤其在研究离子的扩散过程方面有很大的应用价值。 迄今为止, 对于温度依赖的β-镓酸盐型化合物的特性研究很少, 且尚无β-镓酸盐型结构化合物的高压研究。 由于激光拉曼散射技术在研究物质晶格动力学方面的独特优势, 尤其压力与温度依赖的拉曼光谱可以提供重要的结构信息, 是研究物质晶格动力学行为的有效实验手段。 使用大腔体静高压技术成功合成了一种新型的β-镓酸盐型K0.294Ga1.969O3(KGO)晶体, 利用扫描电镜、 能谱对晶体进行了表征, 通过单晶X射线衍射对其晶体结构进行了解析, 并与β-Ga2O3的晶体结构进行了对比分析。 利用高压和变温拉曼光谱研究了KGO导电层中无序碱金属离子的晶格动力学行为。 研究发现, 由尖晶石层与疏松的离子导电层交替排列而成的β-镓酸盐型KGO晶体结构在压力23.3 GPa条件下仍可保持稳定; 由于振动模式不同, 高频拉曼模与低频拉曼模的压力系数存在着显著差异, 并表现出显著的对压力诱导非谐性。 在约300 ℃, KGO中K+发生热激活, 表现在与碱金属K+运动相关的低频拉曼模的强度迅速增加, 而与Ga-O多面体相关的高频振动模强度增加缓慢, 与此同时, K+在沿着导电平面的方向上发生了无序扩散过程。 研究结果将有助于深入地理解β-镓酸盐型结构化合物的导电机制, 而且对于实现β-镓酸盐型化合物精确的计算控制和掺杂尤为重要。
拉曼光谱 单晶X射线衍射 高温高压 离子晶体 Raman spectroscopy Single-crystal X-ray diffraction High-pressure and high-temperature Ionic crystal 
光谱学与光谱分析
2021, 41(3): 807

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!