作者单位
摘要
1 中国科学院金属研究所师昌绪先进材料创新中心,辽宁 沈阳 110016
2 中国科学技术大学材料科学与工程学院,辽宁 沈阳 110016
激光选区熔化GH4169合金粉末的循环使用可以显著降低制备成本、缩短生产周期。但是,利用循环使用的合金粉末,通过激光选区熔化技术成形的部件在组织、缺陷、性能行为上均存在差异。研究了不同循环使用次数下GH4169合金粉末的组织、缺陷及粒径分布等特征对成形件热处理态组织和相分布、拉伸行为及变形机制的影响。分析了循环使用后的粉末形貌和粒径分布、热处理试样的断口形貌、断口纵剖面组织和断口附近透射组织特征,详细阐述了拉伸断裂方式和强韧化机制。结果表明:粉末多次循环使用后平均粒径由30.45 μm逐渐增大至41.80 μm;表面愈加粗糙,流动性由14.85 s/50 g增加到18.62 s/50 g,较差的流动性导致热处理试样出现孔洞缺陷;合金拉伸强度(50~100 MPa)下降,力学性能受损;而断裂方式和变形机制不受影响。热处理态合金析出了纳米尺寸的块状碳化物、短棒状δ相、Laves相以及γ″和γ′强化相,拉伸过程中有效的钉扎位错提升了合金性能,使合金在室温和650 ℃下的最大抗拉强度分别达到1430 MPa和1205 MPa,优于或接近已报道的锻造、铸造和增材制造GH4169合金。研究结果为激光选区熔化GH4169合金的粉末循环使用和拉伸变形机制分析提供了参考。
增材制造 激光选区熔化 GH4169合金 粉末特性 组织演变 拉伸行为 
中国激光
2024, 51(10): 1002310
作者单位
摘要
1 华中科技大学武汉光电国家研究中心,湖北 武汉 430074
2 中国科学院金属研究所,辽宁 沈阳 110016
研究了激光粉末床熔融(LPBF)增材制造技术成形新型定向凝固镍基高温合金ZGH451的致密化行为、显微组织和凝固晶粒取向。结果表明:未熔合和凝固裂纹是主要冶金缺陷;通过增大激光功率、减小扫描间距和扫描速度,可以有效消除未熔合缺陷;在激光功率150 W、扫描层厚0.02 mm、扫描速度600~800 mm/s、扫描间距0.06~0.08 mm的工艺窗口内,可以获得无裂纹、高致密(致密度为99.9%)样品,其凝固组织主要由基本沿构建方向定向生长的柱状晶构成,具有典型的微细枝晶显微组织,一次枝晶间距小于1 μm,二次枝晶不发达。枝晶间存在TiC和TaC颗粒析出,未观察到明显的γ/γ'共晶。样品呈现出一定的定向凝固特性,[001]织构明显,但相邻熔道搭接区域内仍有复杂热流产生的大取向差柱晶。样品力学性能优异,其屈服强度与传统定向凝固工艺制备的第三代单晶高温合金相当。研究结果证实了采用LPBF技术成形定向凝固ZGH451镍基高温合金的可行性。
激光技术 激光粉末床熔融 定向凝固镍基高温合金 冶金缺陷 显微组织 
中国激光
2023, 50(24): 2402304
李乔磊 1,2顾玥 3于雪华 4张朝威 1[ ... ]李金国 1,3,*
作者单位
摘要
1 1.中国科学院 金属研究所, 师昌绪先进材料创新中心, 沈阳 110016
2 2.中国科学技术大学 材料科学与工程学院, 沈阳 110016
3 3.中国科学院太空制造技术重点实验室, 北京 100094
4 4.中国科学院 沈阳自动化研究所, 沈阳 110016
单晶高温合金空心叶片是航空发动机的重要部件, 其内腔结构是采用陶瓷型芯制备的。随着航空发动机推重比提高, 型芯结构越来越复杂, 传统制备工艺受限, 光固化3D打印陶瓷型芯技术为复杂结构型芯的制备提供了一种可行方案。为了改善光固化3D打印陶瓷型芯因台阶效应导致的表面粗糙度较大的问题, 本研究利用固含量体积分数63%的硅基型芯浆料进行光固化3D打印型芯, 并在1100~1300 ℃对型芯素坯进行烧结, 对烧成的硅基陶瓷型芯的微观结构、元素分布、相组成、型芯打印面和打印堆积方向的表面形貌和粗糙度进行分析。研究发现型芯打印面平整, 无明显表面缺陷, 1100、1200和1300 ℃烧结型芯的打印面粗糙度分别为1.83、1.24和1.44 μm; 片层堆积方向的表面有片层结构特征, 片层间出现微裂纹, 1200 ℃以上烧结的型芯表面粗糙度达到空心叶片使用要求(Ra≤2.0 μm)。结果表明不同烧结温度会改变型芯烧结过程中的液相含量、莫来石生成量、莫来石生成形态和颗粒间玻璃相的分布, 从而对光固化3D打印硅基陶瓷型芯的表面粗糙度产生明显影响。光固化3D打印陶瓷型芯技术结合烧结工艺能制备出满足先进空心叶片用硅基陶瓷型芯表面要求的粗糙度。
光固化3D打印 陶瓷型芯 表面形貌 粗糙度 stereolithography 3D printing ceramic core surface morphology roughness 
无机材料学报
2022, 37(3): 325

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!