作者单位
摘要
中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
用于惯性约束聚变的高功率固体激光装置需使用上万件大口径光学元件,激光装置极端的设计性能对光学元件提出了全空间频段(空间频率范围为μm-1级至 m-1级)精度指标和高抗激光损伤的制造要求,形成确定性、高性能的强激光光学元件制造能力是制造激光装置的基础。总结了近年来大口径高功率激光光学元件超精密制造技术及装备方面的研究进展,重点介绍了超精密磨削成形技术、保形快速抛光技术、确定性抛光技术、晶体超精密切削技术及低缺陷制造技术,并分析了高功率激光光学元件制造的未来发展趋势。
测量 先进光学制造 高功率激光 超精密制造 
光学学报
2022, 42(17): 1712004
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
惯性约束聚变高功率固体激光装置研制对大口径光学元件提出了全频段精度控制指标要求, 以及高效率、批量化制造需求。本文围绕“超精密、确定性”强激光光学元件全流程制造方法, 总结了近几年大口径强激光光学元件超精密制造技术取得的重要进展, 重点介绍了单点金刚石超精密切削技术、非球面超精密数控磨削技术、确定性抛光技术等一系列关键技术, 以及相关工艺及装备在强激光光学元件批量制造流程线中的应用情况。
高功率固体激光装置 大口径光学元件 光学超精密制造技术 确定性抛光 high-power laser facility large-aperture optics optical ultra-precision manufacturing technology deter-ministic polishing 
光电工程
2020, 47(8): 200135
作者单位
摘要
1 成都精密光学工程研究中心, 四川 成都 610041
2 哈尔滨工业大学机电工程学院, 黑龙江 哈尔滨 150001
研究了磷酸二氢钾(KDP)晶体表面典型缺陷的形成原因及抑制方法。通过飞切加工及表面染色切削实验证明了成因分析结果的正确性,进一步明确了KDP晶体表面缺陷的形成过程。建立了适用于描述KDP晶体表面缺陷形成过程的理论模型,提出了获得无缺陷晶体表面的工艺条件。对飞切加工参数及刀具结构进行了优化,实验验证了缺陷抑制措施的有效性。研究结果表明,在飞切条件下,KDP晶体(001)晶面的脆塑转变(BDT)深度变化范围为125~268 nm,当沿45°方向切削时BDT深度最大,此时只要保证进给速率小于36.6 μm/r即可避免在晶体表面形成凹坑。通过优化刀具结构,可消除晶体表面的凸起缺陷,有效抑制KDP晶体的表面缺陷,最终获得了粗糙度小于2 nm的光滑KDP晶体表面。
材料 金刚石加工 表面质量 缺陷抑制 磷酸二氢钾(KDP)晶体 飞切 
光学学报
2018, 38(11): 1116001
作者单位
摘要
1 哈尔滨工业大学 机电工程学院, 黑龙江, 哈尔滨 150001
2 成都精密光学工程研究中心, 四川, 成都 610041
研究了磷酸二氢钾(KDP)晶体飞切加工过程中温度场的分布, 探索了切削温度对KDP晶体切削过程的影响。首先, 采用热力耦合有限元分析对KDP晶体切削过程进行了仿真, 获得了不同切削深度下材料内部温度场的分布。分别使用飞切机床和纳米压痕仪在不同速度下切削KDP晶体, 发现不同切削速度下形成的切屑的微观形貌存在显著差异, 分析指出这可能是由于在不同切削速度下切削区域温度差异导致的。最后, 对低速加工过程中获得的切屑进行加热试验, 并观测了不同温升条件下切屑微观形貌的变化。飞切加工仿真实验显示: 当切深为200 nm时, 切削区域的温度达到110 ℃; 而实际实验结果表明: 当温度超过100 ℃时, 切屑的微观形貌会发生明显变化。综合仿真及实验结果可知: 在KDP晶体飞切加工过程中切削区域的温度将超过100 ℃, 因此在对KDP晶体切削机理进行研究时, 必须考虑温度对材料力学性能及其去除过程的影响。
磷酸二氢钾(KDP)晶体 晶体飞切 温度场 切屑 微观形貌 Potassium Dihydrogen Phosphate (KDP) crystal crystal fly-cutting thermal field chip microscopic morphology 
光学 精密工程
2016, 24(8): 1948
作者单位
摘要
哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨 150001
提出了一种新的径推一体式静压主轴支撑方式来优化机床主轴系统性能,以满足超精密飞切机床对气体静压轴承高刚度的要求。采用计算流体力学和有限体积法对气体静压轴承气膜内部的流场与压力场进行仿真,并研究其静态特性。为提高计算精度,完成了轴承宏观尺寸与气膜厚度相差几个数量级时气膜厚度方向2 μm间距的网格划分。仿真结果表明,在偏心状态下由于气膜压力的变化使节流孔气体流速在1 ~200 m/s内变化,机床所采用径推一体式轴承静态刚度达到3 508 N/μm。研究表明,通过增大轴承的供气压强和减小节流孔的直径可改善轴承的静态性能进而提升机床性能。
空气静压轴承 径推一体轴承 承载力 轴承刚度 超精密机床 计算流体力学 aerostatic bearing radial-thrust bearing loading capacity bearing stiffness ultra-precision machine tool computational fluid dynamics 
光学 精密工程
2012, 20(3): 607

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!