王海萍 1,2,*张鹏飞 1徐琢频 1程维民 1,3[ ... ]王琦 1
作者单位
摘要
1 中国科学院合肥物质科学研究院, 安徽 合肥 230031
2 安徽大学, 安徽 合肥 230601
3 中国科学技术大学, 安徽 合肥 230000
根的金属元素含量对高粱生长过程有重要影响。 激光诱导击穿光谱(LIBS)是快速检测作物金属元素的理想技术。 建立了一套基于激光诱导击穿光谱与变维粒子群优化和组合移动窗口(VDPSO-CMW)的波长选择算法相结合的高粱根部金属元素定量分析方法。 获得不同Na和Fe浓度积累的高粱样本27份。 针对高粱根部的LIBS光谱, 利用VDPSO-CMW算法筛选与Na和Fe元素相关的特征波段, 并构建PLS定量分析模型。 经VDPSO-CMW算法优化后, 高粱根部Na元素的PLS模型的建模结果交叉验证决定系数(R2CV)为0.962, 相比优化前的模型上升了6.5%, 交叉验证均方根误差(RMSECV)为1.261, 相比优化前模型下降了37.7%, 预测决定系数(R2P)为0.988, 相比优化前的模型上升了16.8%, 预测均方根误差(RMSEP)为1.063, 相比优化前的模型下降了72.1%; 经VDPSO-CMW算法优化后的高粱根部Fe校正模型的R2CV为0.956, 相比优化前的模型上升了7.4%, RMSECV为5.095, 相比优化前的模型下降了37.1%, R2P为0.955, 相比优化前的模型上升了4.3%, RMSEP为6.438, 相比优化前的模型下降了27.3%。 结果表明, VDPSO-CMW波长选择算法能够剔除LIBS受自吸收、 谱线干扰等因素的波段, 提高定量分析准确度。 该算法和LIBS技术的结合不仅能够实现高粱根部Na和Fe元素的快速精确测定, 也适用于其他样本和元素的定量分析。
激光诱导击穿光谱 VDPSO-CMW算法 定量分析 波长选择 高粱 Laser-induced breakdown spectroscopy VDPSO-CMW algorithm Quantitative analysis Wavelength selection Sorghum 
光谱学与光谱分析
2023, 43(3): 823
作者单位
摘要
中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
:离轴三反光学系统具有成像质量高、可实现大视场、无遮拦等优点,但其装调难度大,镜面支撑结构质量大。为解决这些问题,基于三级像差理论,研究一种主镜、三镜可集成一体化的大视场离轴三反光学系统,并以焦距为1 200 mm,F数为12,视场为10°×1°的光学系统为例进行了验证设计。结果表明:调制传递函数接近衍射极限,视场内平均波像差RMS值为λ/55,最大波像差RMS值为λ/22。设计结果显示,光学系统装调自由度由12个减少到6个,可使光机系统可得到简化,实现了主三镜一体化设计。
光学设计 离轴三反光学系统 像差理论 一体化设计 optical design off-axis three-mirror system aberration theory integration design 
红外与激光工程
2015, 44(2): 0578
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100039
设计了基于高精度直线驱动器和曲柄滑块机构的高精度二维角度调节机构,以实现2 m口径望远镜中哈特曼探测器与自适应光学系统间的高精度对准与自动化调节。依据光学设计分析得出调节机构分别需满足±1°的调节范围和6"的调节精度。根据哈特曼探测器的外形结构和调节机构的整体布局,选择了调节机构中的主要参数,对整体调节机构进行了初始设计并分析了它的精度和动态特性。利用自准直仪设计了调节机构的检测系统,对设计的调节机构的调节范围、精度和动态性能进行了实际测量。结果表明: 哈特曼探测器调节机构在俯仰和扭摆方向上的角度调节量均约为±1.2°,调节精度分别为0.43″和2.1″,均满足设计要求,为哈特曼探测器的高精度探测奠定了基础。
哈特曼探测器 调节机构 曲柄滑块机构 直线驱动器 自准直仪 Shack-Hartmann sensor adjustable mechanism slider-crank mechanism line actuator autocollimator 
光学 精密工程
2015, 23(10): 2852
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 长春 130033
2 中国科学院大学, 北京 100039
3 国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
4 上海交通大学 物理系, 激光等离子体教育部重点实验室, 上海 200240
从分子运动的角度,通过对不同分子沉降过程的量化计算,发现不同污染物沉降速率的差异,由此提出了一种包含污染物化学成分的有效洁净度的概念。有效洁净度从描述物质沉降过程的输运方程出发,通过计算不同理化性质的污染物分子沉降速率对不同污染物进行区分,并将该信息与原标准下的洁净度信息结合。使用美国国家标准与技术学会(NIST)数据库提供的数据代入有效洁净度理论,计算了几种主要污染物的有效洁净度数值,计算结果与法国LIL激光装置中有代表性的污染物的沉降速率及曝光后形成污染的程度进行了对比,与实验观测基本吻合。
大激光工程 激光损伤阈值 有效洁净度 污染物化学成分 large laser engineering laser-induced damage threshold effective cleanliness chemical component of contaminations 
强激光与粒子束
2014, 26(11): 111010
作者单位
摘要
1 大连民族学院 光电子技术研究所, 大连116600
2 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春130033
3 中国科学院 长春光学精密机械与物理研究所, 吉林 长春130033
为了对畸变波前进行精确校正,研究了液晶波前校正器在不同灰度级之间的动态位相响应特性, 准确确定其响应时间。首先给出液晶波前校正器的响应时间和位相变化的检测方案。然后检测了液晶波前校正器在0和255灰度级之间的上升和下降时间, 分别为7 ms和11 ms。在保证校正精度的条件下, 对该位相曲线采取λ/10的误差截断, 使上升和下降时间分别减少到4 ms和6.8 ms。最后, 研究了各灰度级依次上升到255和从255再以次回落到各灰度级的动态响应时间。结果表明, 各灰度级的上升时间在2~5.2 ms之间变化, 下降时间在3.66~8.74 ms之间变化, 且无论是上升还是下降, 150和255灰度级之间转换速度最快, 在255灰度级邻近的灰度响应速度最慢, 且响应时间长于0和255灰度之间的响应时间。因此, 在波前校正中, 须以255灰度邻近的灰度级中最长的响应时间作为液晶波前校正器的响应时间, 以确保波前校正精度。
液晶波前校正器 位相 响应时间 动态 liquid crystal wavefront corrector phase response time dynamic 
液晶与显示
2012, 27(6): 730
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
考虑到反射镜质量、尺寸对载荷敏感度、加工困难程度和总成本的影响,阐述了对空间遥感器大口径主镜进行轻量化设计与优化的必要性。叙述了主镜轻量化技术的一般规律,对几种轻量化方式进行了比较并给出了网格筋大小的确定公式。结合具体工程的主镜设计,针对SiC材料的空间反射镜提出了一种背部半封闭、三角形孔的轻量化形式,用迭代方法完成了轻量化设计,并制作了660 mm轻量化SiC反射镜。提出的设计方式解决了单种轻量化方式存在的不足,使单镜满足了质量小、刚度大的要求,为今后大口径SiC主镜的轻量化技术提供了借鉴和参考。
空间遥感器 主镜 轻量化 space remote sensor primary mirror lightweight 
中国光学
2011, 4(2): 118
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
为了满足大口径、长焦距空间相机中次镜相对于主镜的位置精度要求,设计并研制了主次镜间的支撑结构,分析和试验验证了组合支撑结构的稳定性。首先,根据给定的光学系统,确定了主次镜之间采用薄壁筒和支杆组合的支撑结构形式,对比了支撑杆和薄壁筒的结构形式以及二者之间的连接方式,通过优化,完成了组合支撑结构的设计。然后,讨论了重力对支撑结构的影响,并进行了固有频率和正弦振动响应分析。最后,通过量级逐增力学试验,采用光学方法测量了主、次镜间的角度变化量,验证了支撑结构的结构稳定性。试验结果表明:主、次镜间的角度变化量<10″,组合支撑结构的一阶基频>75 Hz。这些结果满足主、次镜间角度变化量要求,具有较好的结构稳定性。
空间相机 组合支撑结构 结构稳定性 光学测量 space camera combined supporting structure structure stability optical measurement 
光学 精密工程
2010, 18(12): 2633

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!