作者单位
摘要
中国科学院西安光学精密机械研究所, 陕西 西安 710100
对目标进行更多属性信息的获取, 是光学传感器不断追求的目标。 偏振属性探测和传统光谱成像技术相结合的偏振光谱成像技术具有分辨“异物同谱”、 实现“目标凸显”、 “动态调节”、 “耀斑抑制”的能力, 蕴藏非常重要的应用潜力。 目前的偏振光谱成像系统存在诸多的缺点, 如结构复杂、 体积大、 通道串扰、 多维信息提取繁琐等问题。 针对上述问题, 提出一种基于线性渐变滤光片(LVF)和像素化偏振调制的紧凑型偏振光谱成像方法。 涉及关键技术有: 基于高光谱分辨率需求与短焦距约束, 采用双高斯结构作为初始光学结构, 并通过参数设计进行光学系统的仿真与实现; 采用LVF作为分光元件, 进行参数设计与验证, 与像素化偏振调制探测器在像面上进行耦合, 实现光谱信息与偏振信息同步获取。 基于上述技术路线进行了样机集成, 在实验室暗室对系统样机进行光学指标测试, 最终指标为: 工作波段: 430~880 nm, 空间分辨率: 0.22 mrad, 光谱分辨率为: 10 nm, 四偏振态同步获取, 系统传递函数: 0.547, 偏振探测精度: 89.4%, 光机系统总尺寸: 45 mm×45 mm×80 mm。 在室外进行推扫实验, 成像效果良好, 中心波长不同偏振态下的单色图有较明显的强度变化; 对全局图像进行多维信息提取与融合, 不同地物的特征光谱曲线有明显的波谱差异, 满足预期设计目标。 该方法突破了传统偏振光谱成像技术路线的缺点, 为偏振光谱成像多维信息获取提供了一种新型且有重要应用价值的方法。
偏振成像光谱系统 像素偏振调制 线性渐变滤光 系统耦合 Polarization imaging spectroscopy system Pixel polarization modulation Linear Variable Filter System coupling 
光谱学与光谱分析
2023, 43(7): 2082
钟菁菁 1,2,*刘骁 1,3王雪霁 1,3刘嘉诚 1,3[ ... ]于涛 1,3
作者单位
摘要
1 中国科学院西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院大学, 北京 100049
3 中国科学院光谱成像技术重点实验室, 陕西 西安 710119
针对传统光学手段难以实现复杂背景下光谱伪装目标的准确识别, 同时, 常规的数据融合方法易导致图像信息丢失的缺点, 提出了一种基于非下采样轮廓波变换的偏振光谱多维信息融合方法。 该方法结合自研的新型偏振光谱多维信息探测仪器, 根据其获取的目标空间、 光谱、 偏振等多维信息, 设计了多维信息重构算法流程, 提取了偏振态基础数据斯托克斯参量以及偏振度和偏振角, 利用NSCT对基础偏振参量进行图像融合, 提升图像的信息含量以提高伪装物的识别准确率。 先对具有相同边缘信息的图像Q和U采用NSCT分解, 低通子带取均值, 高通子带取最大值进行初步融合, 获得偏振特征S, 最后对偏振特征S、 强度图像I以及偏振度DoLP进行NSCT分解, 对分解所得低通子带进行区域能量加权融合; 对高通子带, 根据偏振特征图像具有灰度值小, 受光照影响大等特点, 采用LBP特征进行加权融合。 同时, 本方法与四类融合方法进行对比, 据信息熵、 标准差、 平均梯度、 对比度以及峰值信噪比五项指标对融合结果进行客观评价, 并结合普通图像, 偏振融合图像, 偏振高光谱图像对目标识别精度进行对比。 融合后的图像信息熵为6.998 6, 标准差为45.599 8, 平均梯度为19.808 6, 与原始强度相比, 提升分别为5.1%, 14.04%, 7.3%, 在四类融合方法中排在首位。 表明本文所提出的方法有效实现了偏振基础特征融合, 提升了人造目标和自然背景的差异。 同时融合后的偏振高光谱图像对于目标的识别准确率达到0.986 2, 较单一强度图像目标识别准确率提升了21%。 实验结果表明, 提出的方法能有效融合目标强度信息以及偏振信息, 提升图像对比度和可读性, 同时融合后的图像在目标识别准确度上有了较大的提升, 有效降低了传统光谱手段对伪装目标识别的虚警率, 为新概念光谱伪装揭露提供了一种新型有效的手段, 具有非常大的应用潜力和应用价值。
偏振光谱图像 特征融合 伪装识别 Polarization spectral images NSCT NSCT Feature fusio Camouflage identification 
光谱学与光谱分析
2023, 43(4): 1254
作者单位
摘要
1 中国科学院西安光学精密机械研究所光谱成像技术重点实验室, 陕西 西安 710119
3 深圳市盐田港集团有限公司, 广东 深圳 518081
水是一种有限的资源, 对农业、 工业乃至人类的生存都是必不可少的, 良好的水环境是可持续发展的重要保障。 对水质信息的科学监测, 是实现水资源优化配置与高效利用的基础。 联合国环境署(UNEP)与世界卫生组织(WHO)指出, 应当加强发展中国家的水质监测网络, 包括数据质量的保证和分析能力的提高。 光谱法作为一种新兴的水质分析方法, 相比传统的化学水质监测方法, 具有“响应速度快、 多参数同步、 绿色无污染”的特点。 传统单波长、 多波长的线性模型依赖于水体对特定波长的吸收特征, 不适用于多组分混合溶液且普适性较差。 因此, 提出了一种基于IERT的非线性全光谱定量分析算法, 建立适用于多组分混合溶液浓度预测模型, 达到利用全光谱信息来预测浓度信息的目的。 利用实验室配置的COD, BOD5和TOC多组分混合溶液与NO3-N、 浊度、 色度多组分混合溶液作为实验样本, 使用光谱仪采集样本的光谱曲线, 通过全光谱数据进行浓度预测实验, 结果显示, 对于COD, BOD5和TOC多组分混合溶液, 本算法对于三种组分的决定系数(R2)分别为0.999 3, 0.991 4和0.999 3, 均方根误差(RMSE)分别为0.024 4, 0.057 7和0.000 4; 对于NO3-N、 浊度、 色度多组分混合溶液, 决定系数(R2)分别为0.983 4, 0.868 4和0.981 0, 均方根误差(RMSE)分别为0.100 5, 0.326 4和0.120 2。 通过对比本算法与偏最小二乘(PLS)、 支持向量机回归(SVR)、 决策树(DT)、 极端随机树(ERT)对于同一组数据的实验结果, 表明: 在两组多组分混合溶液的实验中, 本算法对于其中各组分的决定系数(R2)均为最优, 相比于其他对比算法均方根误差(RMSE)均有大幅减少。 本算法可利用光谱信息对多组分混合溶液进行定量分析, 在计算时间相当的情况下, 可有效的提高浓度预测精度, 减少定量分析的均方根误差, 可为光谱法水质监测提供一种新的有效途径。
光谱法水质监测 紫外可见光谱技术 光谱定量分析 多组分混合溶液 极端随机树 Spectroscopic water quality monitoring Ultraviolet visible spectroscopy technology Spectral quantitative analysis Multi-component mixed solution Extreme random trees 
光谱学与光谱分析
2021, 41(12): 3922
作者单位
摘要
硝酸盐是水质健康状态评价的一个关键要素。 水体中高浓度的硝酸盐会导致生物多样性剧减以及生态系统的退化, 同时对人类的健康产生不可逆转的伤害。 基于光学测量的水质在线监测是当前及未来水环境动态监测的发展趋势。 相较于传统硝酸盐现场采样加实验室分析的测定方法, 具有操作便捷, 无需前处理, 检测效率高, 可靠性好且无污染等显著优点。 由于实际水体组分的复杂性与多样性, 水体参数和吸光度二者并非呈现线性相关, 传统的单波长法, 双波长法, 偏最小二乘法等线性回归预测模型已不适用。 基于此, 提出一种精细全光谱结合可变步长网格搜索, 优化支持向量回归(GS-SVR)的水体硝酸盐分析方法。 同时与陕西科技大学化学与化工学院合作, 采用标准的硝酸盐溶液, 铂-钴标准溶液, 福尔马肼标准混悬液根据实验要求配制了不同浓度梯度94组溶液样本。 首先将采集到的透射率光谱数据完成吸光度转换, 并使用Kennard-Stone方法将94个溶液样本划分为80个训练集和14个测试集。 其次使用改进的GS算法结合交叉验证, 通过多次迭代, 减小搜索范围、 改变搜索步长对SVR进行参数寻优, 并将最优惩罚参数C和核函数宽度σ用于训练集中进行模型建立, 最后用所建立的模型对测试集进行浓度预测。 并将预测效果与反向传播神经网络(BPNN), SVR, GS-SVR, 粒子群算法优化SVR(PSO-SVR), 遗传算法优化SVR(GA-SVR)的模型预测结果比较, 结果显示, 提出的算法模型相关系数R2=0.993 5, 预测均方根误差RMSEP=0.043 5, 最优参数Cσ组合为(512, 0.044 2), 平均训练时间为13 s。 相较于上述五种预测模型, R2分别提高了1.22%, 11.66%, 0.78%, 0.74%和0.77%, 训练效率分别提升4.15倍(BPNN), 8.30倍(GS-SVR), 21.38倍(PSO-SVR), 10.23倍(GA-SVR)。 模型的预测精度以及训练效率方面都取得了很大的提升, 为复杂水体硝酸盐浓度的快速实时在线监测提供了一种新的方法。 同时, 该方法具备一定的普适性, 也适用于其他水质参数预测模型的建立。
精细全光谱 硝酸盐 网格搜索 支持向量回归 Fine full spectrum Nitrate Improved grid search Support vector regression 
光谱学与光谱分析
2021, 41(2): 372
作者单位
摘要
1 中国科学院西安光学精密机械研究所光谱成像技术重点实验室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
3 西安理工大学理学院, 陕西 西安 710048
4 青岛海洋科学与技术国家实验室海洋观测与探测联合实验室, 山东 青岛 266200
热液释放的高温甲烷气体经扩散作用先后进入海洋和大气, 并对地球物理、 化学和生物方面产生深刻影响。 由于海洋溶解甲烷数据的缺乏, 导致人们对深海热液释放甲烷的活动机制和环境效应还缺乏足够的认识。 我们前期提出一种光学被动成像干涉系统OPIIS用于热液甲烷浓度、 温度和压强的实时探测和长期观测。 为了从OPIIS的干涉光谱中精确、 稳定、 快速的获取热液甲烷信息, 采用将干涉光谱与偏最小二乘法相结合的方法处理OPIIS数据。 首先分别建立三个甲烷浓度、 温度和压强的单因变量预测模型, 再利用干涉条纹与辐射光谱的关系, 间接建立干涉光谱与甲烷浓度、 温度和压强的PLS预测模型, 提高了预测模型在实际应用中的抗干扰能力和稳定性。 基于洛仑兹线型建立了不同于大气环境的深海气体辐射模型, 并利用HITRAN2016分子光谱数据库的光谱参数, 建立了深海甲烷在任意浓度、 任意温度和任意压强下的辐射光谱数据库。 挑选热液其他气体对甲烷探测干扰较小的甲烷泛频带1.64~1.66 μm内的六条谱线建立甲烷辐射光谱与浓度、 温度和压强的偏最小二乘回归模型。 另外, 分析了训练集取样个数、 取样间隔和主成分个数对提高预测模型综合性能的作用。 利用不同训练集样本数, 不同训练集取样间隔和不同的主成分数, 分别建立96个浓度、 温度和压强预测模型, 并分别利用25组预测集样本对预测模型进行交叉验证。 不同模型预测均方根误差和决定系数的对比表明, 训练集取样个数、 取样间隔和主成分个数等单一因素的改变并不能同时提高预测模型的预测精度、 稳定性、 适用范围和运算量等综合性能。 经过平衡选取各项指标确定的最优回归模型的参数为: 浓度、 温度和压强的适用范围分别为5~375 mmol·L-1, 580~678 K, 10~34.5 MPa, 浓度、 温度和压强的训练集取样个数分别为50组, 25组, 25组, 采样间隔分别为5 mmol·L-1, 2 K, 0.5 MPa, 浓度、 温度和压强预测模型的主成分数分别为2, 2, 5。 浓度、 温度和压强预测模型的预测均方根误差分别为3.082×10-6, 0.977 0, 5.052×10-3, 决定系数分别为0.999 9, 0.998 9, 0.999 9。 浓度、 温度和压强的预测误差分别为±1.21×10-7, ±3.63×10-3, ±9.49×10-4, 对应的预测精度分别为±45.4 nmol·L-1, ±2.5 K, ±3.3×10-2 MPa。 结果表明, 干涉光谱结合偏最小二乘法的反演算法可以精确、 稳定、 快速的获取热液甲烷气体的浓度、 温度和压强信息。
热液甲烷 偏最小二乘法 成像干涉 反演 Hydrothermal methane Partial least squares (PLS) Imaging interference Retrieval 
光谱学与光谱分析
2019, 39(8): 2415
王雪霁 1,2,*胡炳樑 1于涛 1刘青松 1,2[ ... ]范尧 1
作者单位
摘要
1 中国科学院西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院大学, 北京 100049
水中过量的硝酸盐会造成部分水生生物难以存活、 引发人类尤其是婴儿患病等危害, 因此硝酸盐浓度成为水质检测中的一项重要指标。 传统的硝酸盐浓度测量方法操作复杂、 反应缓慢, 近年许多研究人员开始通过紫外可见(UV-Vis)光谱技术结合人工神经网络(ANN)的方法对水中硝酸盐的含量进行测量。 提出了一种将流形学习(manifold learning)方法中的局部线性嵌入(LLE)与反向传播神经网络(BPNN)相结合的建模方法, 用以得到硝酸盐光谱曲线与浓度间的关系, 实现对青岛市崂山区小麦岛海水中硝酸盐浓度快速准确的定量分析。 实验选取了过滤后的小麦岛海水配置59组不同浓度的加标溶液, 采用实验室自主研制的光谱分析仪采集这些样本的光谱测量值, 通过标准正态变换(SNV)方法对测得硝酸盐溶液的光谱数据进行校正处理, 有效降低了由仪器本身或环境带来的噪声影响; 选取预处理后的光谱数据的前1 500维处理后进行对比实验, 以解决使用BPNN对全部2 048维数据建模时内存不足的问题, 再通过网格搜索结合十折交叉验证的方法优化LLE中的邻近点数k和嵌入维数d, 得到最优参数值k=15, d=3, 实现对实验数据的降维处理; 通过BPNN将降维后的训练集光谱信息与其对应的浓度信息进行建模, 实现对预测集硝酸盐浓度定量分析, 引入决定系数(R2)和预测均方根误差(RMSEP)评价建模效果, 与直接使用BPNN建模预测的结果比较, 改进方法的R2由0.926 3提升至0.992 8, RMSEP由0.442 5下降到0.280 4, 建模预测程序的运行时间由327 s缩短至0.5 s。 采用这59组数据的全部2 048维进行LLE-BPNN建模时, 得到R2=0.995 7, RMSEP=0.136 5, 在用时相近的前提下, 相比仅使用前1 500维时的建模精度更好。 分析结果表明, LLE-BPNN的方法可实现对海水中硝酸盐浓度的快速预测, 使预测精度得到显著提升, 同时能大幅降低预测时间。
硝酸盐浓度 紫外可见光谱技术 局部线性嵌入 反向传播神经网络 Nitrate concentration Ultraviolet/visible spectral technology Locally linear embedding Back propagation neural network 
光谱学与光谱分析
2019, 39(5): 1503
作者单位
摘要
1 中国科学院西安光学精密机械研究所 光谱成像技术重点实验室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
3 西安理工大学 理学院, 陕西 西安 710048
4 青岛海洋科学与技术国家实验室 海洋观测与探测联合实验室, 山东 青岛 266200
为了实现对热液甲烷浓度、温度和压强信息的实时、长期探测, 提出一种新颖的光学被动成像干涉系统(Optical Passive Imaging Interference System, OPIIS), 并建立了该系统的正演模型和反演模型。首先利用IDL语言建立了包括深海气体辐射模型、海水传输模型和仪器响应模型的OPIIS正演模型, 并模拟其正演干涉图。正演干涉图信噪比总体处于50~70, 浓度探测灵敏度为0.1 mmol/L, 温度灵敏度为2 K, 压强灵敏度为0.1 MPa。其次采用成像干涉技术结合偏最小二乘法的方法进行OPIIS数据的精确、快速反演。利用25个建模样本建立了甲烷多因变量PLS回归模型, 并利用25个预测样本对回归模型进行交叉检验。该最优回归模型的浓度预测最大误差为1.9%, 温度预测最大误差为0.38%, 压强预测最大误差为1.0%。
甲烷 热液 正演 反演 methane hydrothermal forward retrieval 
红外与激光工程
2018, 47(9): 0903006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!