作者单位
摘要
1 军委装备发展部某中心, 北京 100034
2 中国人民解放军 海军八〇七厂, 北京 102401
3 中国电子科技集团公司 第二十四研究所, 重庆 400060
氮化镓(GaN)是第三代半导体的典型代表,受到学术界和产业界的广泛关注,正在成为未来超越摩尔定律所依靠的重要技术之一。对于射频(RF)GaN技术,在电信和**两大主要应用增长行业,尤其是军用领域对先进雷达和通信系统不断增加的需求,推动了RF GaN器件向更高频率、更大功率和更高可靠性发展。文章梳理了在该领域中GaN RF/微波HEMT、毫米波晶体管和单片微波集成电路(MMIC)、GaN器件空间应用可靠性和抗辐射加固等技术发展的脉络。在功率电子方面,对高效、绿色和智能化能源的需求拉动GaN功率电子、电源变换器向快速充电、高效和小型化方向发展。简述了应用于纯电动与混合动力电动汽车(EV/HEV)、工业制造、电信基础设施等场合的GaN功率器件的研发进展和商用情况。在数字计算特别是量子计算前沿,GaN是具有应用前景的技术之一。介绍了GaN计算和低温电子技术研究的几个亮点。总而言之,对GaN技术发展几大领域发展的最新趋势作了概括性描述,勾画出技术发展的粗略线条。
射频GaN GaN功率器件 数字电子的GaN GaN量子计算 GaN GaN RF GaN GaN power device GaN for digital electronics GaN quantum computing 
微电子学
2022, 52(4): 614
陈思远 1,2,3于新 1,2陆妩 1,2王信 1,2[ ... ]郭旗 1,2
作者单位
摘要
1 中国科学院 新疆理化技术研究所 特殊环境功能材料与器件重点实验室, 乌鲁木齐 830011
2 中国科学院 新疆理化技术研究所 新疆电子信息材料与器件重点实验室, 乌鲁木齐 830011
3 中国科学院大学, 北京 100049
研究了P型帽层和共源共栅(Cascode)结构氮化镓(GaN)功率器件高/低剂量率辐照损伤效应。试验结果表明,P型帽层和Cascode结构GaN功率器件都不具有低剂量率损伤增强效应(ELDRS); Cascode结构GaN功率器件总剂量辐照损伤退化更明显; P型帽层结构的GaN功率器件抗总剂量能力较强。分析了二者的退化机制。试验结果为GaN功率器件空间应用提供了有益参考。
氮化镓功率器件 总剂量效应 低剂量率损伤增强效应 GaN power device total ionizing dose effect enhanced low dose rate sensitivity (ELDRS) 
微电子学
2021, 51(3): 444

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!