作者单位
摘要
1 大连理工大学 机械工程学院,辽宁大连6024
2 大连理工高邮研究院有限公司,江苏 高邮5600
为实时检测二维线性模组的运动误差,搭建了误差实时测量系统。该系统由四自由度运动误差测量模块、滚动角误差测量模块和线性光栅尺组成,实现单轴六自由度运动误差测量。基于齐次坐标转换矩阵(Homogeneous Transformation Matrix,HTM)原理构建二维模组的空间误差模型,对功能点的实际空间位置进行表示;完成测量系统标定实验,并基于阿贝-布莱恩原则处理实验数据完成比对实验。最终,测量系统的定位误差、直线度误差和角度误差测量精度分别达到±1.2 μm,±1.3 μm和±1'',并根据空间误差模型分析二维线性模组XZ平面对角线位置的测量误差。结果表明,使用二维线性模组空间误差模型求解后,XZ平面对角线位置的测量误差由68 μm降至13 μm,证明采用该系统进行线性模组误差测量是有效的;此外,因为加载状态下二维线性模组各位置的运动误差会改变,为验证测量系统能够实时测量出线性模组的空间误差变化,在Z轴滑块上加装质量为2 kg的标准砝码进行对照实验。结果显示,在使用二维线性模组空间误差模型求解后,XZ平面对角线位置的测量误差由56 μm降至14 μm。
误差测量系统 二维线性模组 空间误差模型 实时测量 error measurement system two-dimensional linear module spatial error model real-time measurement 
光学 精密工程
2023, 31(21): 3111
作者单位
摘要
北京交通大学发光与光信息技术教育部重点实验室,北京 100044
仪器是获取信息的主要手段,是信息产业的支撑。快速准确地获得多种信息是测量仪器的一大发展趋势,也是信息时代快速发展的必然要求。激光多自由度同时测量具有测量效率高、多自由度误差参数同时测量等显著优点,克服了传统激光单参数测量获取信息有限、测量效率低下等缺点,成为数控机床误差测量等领域重要的研究方向。本文按照激光单自由度测量方法到多自由度同时测量系统集成的顺序,对目前激光多自由度同时测量方法和系统进行了较全面的介绍,分析了其优缺点,并讨论了激光多自由度未来的发展趋势。
测量 单自由度测量 多自由度同时测量 数控机床误差测量 研究现状与发展趋势 
激光与光电子学进展
2023, 60(3): 0312012
作者单位
摘要
北京理工大学 精密光电测试仪器及技术北京市重点实验室,北京 100081
非球面广泛应用于光学系统中。表征非球面的基本参数包括顶点曲率半径、圆锥系数以及高阶非球面系数,它们贯穿了非球面的设计、制造、检测、装调过程。对非球面参数的高精度测量是加工和装调的前提。提出了一种基于虚实结合干涉仪的部分补偿非球面参数误差测量系统。在该系统中,采用部分补偿干涉法测量剩余波前,复用干涉仪利用轴向扫描透镜的猫眼波前定位法测量补偿镜与被测镜之间的间距,采用虚实结合迭代算法进行参数误差求解。该系统仅需在部分补偿干涉光路中引入会聚透镜,装调简单,测量精度高。通过一个四次非球面参数误差测量实验验证了该方法的有效性和精度。
仪器科学与技术 非球面参数误差测量系统 虚实结合干涉法 猫眼波前定位 instrument science and technology aspheric parameter error measurement system virtual-real combination interferometry cat-eye wavefront positioning. 
红外与激光工程
2022, 51(9): 20220497
李锟 1,2丁红昌 1,3,*曹国华 1,3,*侯翰 1
作者单位
摘要
1 长春理工大学 机电工程学院,吉林 长春 130022
2 长春工程学院 工程训练中心,吉林 长春 130012
3 长春理工大学 重庆研究院,重庆 401135
为了解决光电编码器误差检测精度低、光机结构复杂、检测周期长等问题,利用自准直仪与多面棱体的光学小角度测量原理及转角互逆双轴转台的连续误差检测方法,建立了光学连续闭环光电编码器误差检测系统;采用多体系统理论与相对位姿矩阵变换方法,建立了双轴转台全误差模型,分析了固定误差和可变误差对系统的影响;利用标定自准直仪与23面棱体对检测系统进行了校准,并利用高精度光电编码器与系统进行了精度对比验证。结果表明:检测系统的双轴回转精度满足数值仿真计算要求,系统精度可达0.38″,测量不确定度为0.2″(k=2),系统检测精度与实际编码器出厂时标定的准确度基本一致,验证了光学连续闭环光电编码器误差检测系统实现高精度和全圆周连续误差检测的可行性。
光电编码器 误差检测 光电自准直仪 误差建模 转台 photoelectric encoder error measurement photoelectric autocollimator error modeling turntable 
红外与激光工程
2022, 51(7): 20210715
张永峰 1,2,3,**鲜浩 1,2,*
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
分析间隙及偏心影响下的子孔径远场光斑形态变化,并探索采用理想圆孔径模板库匹配含间隙及偏心孔径的远场图样进行共相的可行性及适用范围。数值仿真了不同间隙及不同掩模偏心下的远场光斑形态,得到了二者对远场形态的影响趋势;数值模拟了采用理想模板窄带共相的过程,分析了不同间隙及不同掩模偏心下,不同平移误差的共相精度。研究表明,间隙越大,远场扩展范围越宽;偏心越大,远场受平移误差调制的效应越不明显;当间隙比例因子或偏心比例因子不超过0.3时,可直接采用理想模板共相。该研究拓展了窄带共相算法的应用,为深入研究窄带共相算法提供了相应基础。
成像系统 拼接望远镜 平移误差测量 间隙 掩模偏心 窄带算法 
激光与光电子学进展
2020, 57(8): 081101
作者单位
摘要
1 北京交通大学 发光与光信息教育部重点实验室, 北京 100044
2 西安应用光学研究所, 陕西 西安 710065
提出了一种基于光纤激光自准直转轴转角定位误差测量的方法, 建立了包含转轴运动误差以及安装误差的误差模型, 仿真分析了23项误差对转角定位误差测量的影响, 结果表明仅有参考转轴与待测转轴之间的4项安装误差的影响量与转轴旋转角度相关, 且只需精细调整其中两项角度安装误差即可保证影响量小于0.2″。利用所搭建的测量装置对某分度盘的转角定位误差进行了测量, 三次测量重复性偏差约为0.9″, 与光电自准直仪对比的最大偏差约为0.6″。结果表明: 利用该测量方法和测量装置可以实现转轴转角定位误差的全周范围高精度测量, 验证了所提出模型的有效性。
转角定位误差 激光自准直 误差测量 转轴 angular positioning error laser autocollimation error measurement rotary axis 
红外与激光工程
2019, 48(2): 0217001
郭世杰 1,2,3,*姜歌东 1,2,3梅雪松 1,2,3陶涛 1,2,3
作者单位
摘要
1 陕西省智能机器人重点实验室, 陕西 西安 710049
2 机械制造与系统工程国家重点实验室, 陕西 西安 710049
3 西安交通大学 机械工程学院, 陕西 西安 710049
为降低转动轴几何误差对转台-摆头式五轴机床精度的影响, 提出了基于球杆仪的位置无关几何误差测量和辨识方法。基于多体系统理论及齐次坐标变换方法建立了转台-摆头式五轴机床位置无关几何误差模型, 依据旋转轴不同运动状态下的几何误差影响因素建立基于圆轨迹的四种测量模式, 并实现10项位置无关几何误差的辨识。利用所建立的几何误差模型进行数值模拟, 确定转动轴的10项位置无关几何误差对测量轨迹的影响。最后, 采用误差补偿的形式实验验证所提出的测量及辨识方法的有效性, 将位置无关几何误差补偿前后的测量轨迹进行比较。误差补偿后10项位置无关几何误差的平均补偿率为70.4%, 最大补偿率达到88.4%, 实验结果表明所提出的建模和辨识方法可用于转台-摆头式五轴机床转动轴精度检测, 同时可为机床精度评价及几何精度提升提供依据。
五轴机床 转动轴 位置无关几何误差 误差测量 误差辨识 five-axis machine tool rotary axes position-independent geometric error error measurement error identification 
光学 精密工程
2018, 26(11): 2684
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
由于光电编码器动态检测转台的分辨率、精度和转速都比较高, 传统检测手段很难精确标定该类转台的动态精度, 故本文开展了转台动态精度标定方法的研究。首先, 分析动态转台工作原理, 指出了影响转台动态精度的主要因素。然后, 研究了动态误差的主要特性, 提出了一种基于动态重复性的转台动态精度标定方法。最后, 设计了FPGA+USB的数据采集电路, 实现了对转台动态精度的标定。对自行研制的转台进行了动态精度标定。标定结果显示: 提出的动态精度标定方法能够实现对转台的标定, 验证了该转台能够实现对被检编码器的动态检测, 解决了研制动态转台时缺少动态检测精度标定方法的难题。
动态转台 光电编码器 误差检测 动态误差标定 dynamic platform photoelectric encoder error measurement dynamic error calibration 
光学 精密工程
2016, 24(11): 2699
李春才 1,2,*巩岩 1
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
2 中国科学院大学,北京 100049
基于双相位编码光学联合变换相关技术提出了一种测量透镜中心偏差的方法以确定偏差方向并提高测量精度。在经典联合变换相关原理基础之上,使用两个相位函数分别对参考图像和联合功率谱进行编码,并选用合适的滤波器消除旁瓣干扰,得到单个互相关峰的输出。利用该双相位编码后的联合变换相关技术探测不同目标图像相对于参考图像的位移矢量,并拟合圆。此拟合圆圆心到圆上点的矢量即为经自准直光学系统放大后的偏心矢量,从而同时确定了中心偏差的大小和方向。实验结果表明,通过双相位编码后的相关输出仅保留一个尖锐的相关峰,实现了位移矢量的亚像元探测; 使用联合变换相关技术准确地测量了透镜的中心偏差,其测量结果的实验标准差为0.1 μm,误差绝对值最大为0.3 μm, 满足一般透镜中心偏差测量的要求。
透镜 光学装调 中心偏差测量 联合变换相关 双相位编码 位移探测 lens optical alignment centering error measurement joint transform correlator double phase-encoding displacement measurement 
光学 精密工程
2015, 23(10): 2785
作者单位
摘要
1 浙江大学 机械工程学系 浙江省先进制造技术重点实验室, 浙江 杭州 310027
2 华南理工大学 机械与汽车工程学院 广东省精密装备与制造技术重点实验室, 广东 广州 510640
提出了一种基于球杆仪的主轴热误差检测新方法用于五轴数控机床主轴热误差的便捷检测。该方法借助五轴数控机床的两个旋转轴分别单独运动, 实现两个正交圆或圆弧构成的球杆仪空间轨迹测量; 采用最小二乘方法对测量数据进行处理, 求解主轴空间位置; 通过初始状态和经过一定时间间隔测量多组数据, 分离得到相应时间段的主轴热误差, 包括1个轴向热伸长和2个径向热误差。以双转台五轴数控机床为例, 从安装方法、测量步骤和辨识原理等方面介绍基于球杆仪的主轴热误差检测方法, 并与ISO 230-3中的5点法进行了对比实验。实验结果显示: 该方法的辨识结果与5点法测量结果的平均相对偏差小于15.8%, 验证了本文方法的可行性和有效性。该方法测量装置简洁, 便于携带、安装和测量, 测试结果可为五轴数控机床主轴热误差补偿提供依据, 从而有效地提高机床的加工精度。
五轴数控机床 主轴 热误差 误差测量 球杆仪 5-axis Computer Numberical Control(CNC) machine to spindle thermal error error measurement ball bar 
光学 精密工程
2015, 23(5): 1401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!