Author Affiliations
Abstract
Central Research Institute, 2012 Labs, Huawei Technologies, Shenzhen 518129, China
We propose an alternative approach to compensation of intermodal interactions in few-mode optical fibers by means of digital backpropagation. Instead of solving the inverse generalized multimode nonlinear Schrödinger equation, we accomplish backpropagation of the multimode signals with help of their near-field intensity distributions captured by a camera. We demonstrate that this task can successfully be handled by a deep neural network and provide a proof of concept by training an autoencoder for backpropagation of six linearly polarized (LP) modes of a step-index fiber.
optical fibers multimode fibers few-mode fibers digital signal processing space division multiplexing mode division multiplexing mode decomposition 
Chinese Optics Letters
2023, 21(3): 030601
Author Affiliations
Abstract
CREOL, The College of Optics & Photonics, University of Central Florida, Orlando, FL 32816, USA
Space-division multiplexing (SDM) has attracted significant attention in recent years because larger transmission capacity is enabled by more degrees of freedom (DOFs) in few-mode fibers (FMFs) compared with single-mode fibers (SMFs). To transmit independent information on spatial modes without or with minor digital signal processing (DSP), weakly-coupled FMFs are preferred in various applications. Several cases with different use of spatial DOFs in weakly-coupled FMFs are demonstrated in this work, including single-mode or mode-group-multiplexed transmission, and spatial DOFs combined with time or frequency DOF to improve the system performance.
multiplexing nonlinear optics fibers radio frequency photonics fiber optics links and subsystems few-mode fibers 
Chinese Optics Letters
2020, 18(4): 040601

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!