郭俊 1刘坚 1陈鹏 1宋青松 2[ ... ]徐军 2
作者单位
摘要
1 江苏师范大学物理与电子工程学院,徐州 221116
2 同济大学物理科学与工程学院,上海 200092
采用微下拉法生长了不同掺杂浓度(0.25%,0.50%,0.75%,1.00%,原子数分数)的Nd∶CaYAlO4单晶光纤。通过X射线衍射测试了单晶光纤晶体结构,结果表明晶体结构为四方晶系。测试了Nd∶CaYAlO4单晶光纤的室温偏振吸收和荧光光谱,测试样品在807 nm附近有很强的吸收。其中,1.00%Nd∶CaYAlO4的吸收最强,在σ偏振方向的吸收系数为4.20 cm-1,π偏振方向的吸收系数为4.06 cm-1。1.00%Nd∶CaYAlO4单晶光纤最强发射峰在σ和π偏振下都位于1 080 nm,σ偏振方向的发射带宽为17.7 nm,π偏振方向的发射带宽为17.8 nm。0.25%、0.50%、0.75%、1.00%掺杂浓度的Nd∶CaYAlO4单晶光纤4F3/2能级的荧光寿命分别为129、133、135和140 μs,未观察到浓度猝灭。结果表明Nd∶CaYAlO4单晶光纤是有潜力的超快激光增益介质。
微下拉法 单晶光纤 晶体生长 光谱性能 micro-pulling-down method crystal fiber Nd∶CaYAlO4 Nd∶CaYAlO4 crystal growth spectral property 
人工晶体学报
2023, 52(7): 1345
作者单位
摘要
1 山东大学晶体材料国家重点实验室,济南 250100
2 山东省工业技术研究院,济南 250100
Tb3Ga5O12晶体是一种具有良好磁光性能的主流商用材料,但生长过程中存在严重的氧化镓挥发问题,导致晶体难以满足高功率应用的发展需求,而菲尔德常数较大的Tb3Al5O12晶体的不一致熔融特性使该晶体难以生长,因此亟需探索新型高质量磁光晶体以满足高功率应用需求。基于此,本文采用微下拉法在高纯氩气和二氧化碳混合气氛下生长了Tb3AlxGa5-xO12(TAGG)系列高掺铝磁光晶体。摇摆曲线测试结果表明TAGG磁光晶体拥有高结晶质量。透过光谱和磁光特性测试结果表明,与传统Tb3Ga5O12晶体相比,TAGG磁光晶体具有更高的透过率和更大的菲尔德常数,是一种非常有潜力的可应用于高功率激光系统的低成本磁光材料。
磁光晶体 晶体生长 微下拉法 铽基石榴石 Tb3Ga5O12 Tb3Ga5O12 TAGG TAGG magneto-optical crystal crystal growth micro-pulling-down method Tb3+-based garnet 
人工晶体学报
2023, 52(1): 8
作者单位
摘要
眉山博雅新材料股份有限公司, 眉山 620000
单晶光纤因其独特的结构特点以及优良的物理性能而被广泛应用于高功率激光器、辐射探测以及高温环境监测等领域。本文综述了单晶光纤的生长技术, 探讨了微下拉法(μ-PD)、激光加热基座法(LHPG)以及导模法(EFG)的生长特点, 并重点梳理了单晶光纤生长过程中存在的问题及解决方案。此外详细介绍了包层制备技术发展现状以及局限性。最后, 阐述了现阶段单晶光纤的主要分类以及应用场景并对未来发展作出展望。
单晶光纤 微下拉法 激光加热基座法 导模法 化学溶蚀法 包层制备 光纤种类 single crystal fiber micro-pulling-down method laser heated pedestal growth edge-defined film-fed growth chemical dissolution method cladding preparation fiber type 
人工晶体学报
2021, 50(12): 2362
作者单位
摘要
1 江苏师范大学物理与电子工程学院,徐州 221116
2 同济大学物理科学与工程学院,上海 200092
3 中国电子科技集团第二十六研究所,重庆 400060
采用微下拉法成功生长出Sm∶YAG和Sm∶Y3ScAl4O12单晶光纤。XRD结果表明晶体为立方晶系,晶胞参数分别为a=1.199 3 nm和a=1.200 0 nm。测试了室温下单晶光纤的拉曼光谱、吸收光谱、荧光光谱和荧光寿命。Sm∶Y3ScAl4O12最大声子能量为766 cm-1。Sm∶YAG和Sm∶Y3ScAl4O12 在可见波段的最强吸收位于405 nm附近,非常适合InGaN/GaN二极管泵浦。404 nm激发下,最强发射带位于618 nm处, 对应于Sm3+的4G5/2→ 6H7/2能级跃迁, 测得Sm∶YAG和Sm∶Y3ScAl4O12上能级4G5/2的荧光寿命分别为1.86 ms和1.83 ms。实验结果表明Sm∶YAG和Sm∶Y3ScAl4O12单晶光纤是有潜力的红橙光波段激光增益介质。
单晶光纤 微下拉法 晶体生长 可见激光 光谱性能 Sm∶YAG Sm∶YAG Sm∶Y3ScAl4O12 Sm∶Y3ScAl4O12 single crystal fiber micro-pulling-down method crystal growth visible laser spectral property 
人工晶体学报
2021, 50(7): 1391
作者单位
摘要
中山大学材料学院, 深圳 518107
两相有序共晶材料由于具有不同折射率的两晶相呈现有序排列, 可降低荧光在共晶材料内部的散射而实现导光功能, 可被应用于高分辨探测成像器件中。本工作根据定向凝固原理, 用微下降法生长技术制备得到了直径为3 mm的GdAlO3∶Tb3+-Al2O3两相有序共晶。通过SEM和元素分析, 探究了GdAlO3∶Tb3+-Al2O3共晶内部的微结构, 结果显示, 所得共晶中GdAlO3∶Tb3+晶相均匀有序地分布于基质Al2O3晶相中, GdAlO3∶Tb3+晶相直径的大小受生长速率的影响, 速率越快, 直径越小。所制备得到的GdAlO3∶Tb3+-Al2O3有序共晶在X射线辐照下发射出明亮的绿色荧光, 并在GdAlO3∶Tb3+晶相中定向传播, 有望被用作X射线探测成像材料, 提高探测器的空间分辨率。
有序共晶 定向凝固 微下降法 辐照发光 ordered eutectic directional solidification micro-pulling-down method radioluminescence GdAlO3∶Tb3+ GdAlO3∶Tb3+ 
人工晶体学报
2021, 50(10): 1971
作者单位
摘要
1 江西理工大学化学化工学院, 赣州 341000
2 中山大学材料学院, 深圳 518107
稀土共晶闪烁体是通过定向凝固晶体生长技术, 将具有不同折射率的两相制备成具有射线探测功能的共晶材料, 其中含有激活离子的闪烁体相的折射率高于基质相。在高能射线辐照下, 闪烁体相将入射高能射线转换成荧光, 然后, 荧光在闪烁体相和基底相的界面以全反射的形式实现定向输出, 从而有效提高辐射探测成像的空间分辨率。本工作采用微下降法成功生长得到3 mm×117.0 mm 的1.0%(原子数分数)Ce∶GdLu2Al5O12/Al2O3闪烁共晶样品。通过切割抛光加工得到3 mm×2.0 mm的共晶薄片, 并将该共晶薄片进行微观结构、能谱分析和荧光性能等表征和测试, 结果表明所得到的共晶样品由Ce∶GdLuAG和Al2O3两晶相构成, 微观结构呈现出“中国结”结构, 并在生长方向呈现出一定的有序排列。荧光光谱测试表明该共晶材料存在Gd3+-Ce3+间的能量传递, 具有典型的Ce3+辐射跃迁, 其中双宽峰发射峰最强位于560 nm。此外, 根据生长速率对共晶样品发射峰强、峰位以及荧光寿命影响, 优化出最佳下拉生长速率为4.0 mm/min。
共晶 Ce掺杂 微下降法 闪烁晶体 晶体生长 微结构 eutectic Ce doped micro-pulling-down method GdLu2Al5O12 GdLu2Al5O12 Al2O3 Al2O3 scintillation crystal crystal growth microstructure 
人工晶体学报
2021, 50(10): 1963
作者单位
摘要
1 上海应用技术大学材料科学与工程学院, 上海 201418
2 北京工业大学激光工程研究院, 北京 100124
3 加州大学劳伦斯伯克利国家实验室, 加州伯克利 94720
钽酸镁(Mg4Ta2O9)晶体的衰减时间快于CdWO4晶体, 光产额及能量分辨率高于CdWO4晶体, 低余辉特性和CdWO4类似, 在0.01%/3 ms左右, 又由于Mg4Ta2O9晶体材料无毒性元素, 使其成为具有替代含有毒Cd元素的CdWO4晶体, 应用于集装箱安检领域的最佳候选材料之一。本文综述了Mg4Ta2O9晶体的结构特性、晶体生长、闪烁性能及掺杂改性等方面的研究进展, 发现通过掺杂Zn或Nb能显著提高其光产额。
钽酸镁晶体 闪烁晶体 微下拉法 光学浮区法 掺杂 magnesium tantalite crystal Mg4Ta2O9 Mg4Ta2O9 scintillation crystal micro-pulling-down method optical floating-zone method doping 
人工晶体学报
2021, 50(10): 1870

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!