作者单位
摘要
大连理工大学光电工程与仪器科学学院,辽宁 大连 116024
针对宽谱连续波差分吸收激光雷达(DIAL)的特点,通过仿真不同大气条件下的激光雷达信号,计算分析宽谱DIAL气溶胶消光和后向散射效应引起的二氧化氮(NO2)质量浓度反演误差。研究结果表明:当大气气溶胶均匀分布时,NO2质量浓度反演误差主要取决于气溶胶消光效应,而后向散射效应引起的NO2质量浓度反演误差一般可忽略不计;当大气气溶胶非均匀分布时,气溶胶后向散射效应引起的NO2质量浓度反演误差依赖于气溶胶非均匀分布程度,且与波长指数成反比。此外,适当增大分段拟合距离可有效降低气溶胶后向散射效应引起的NO2质量浓度反演误差。利用光谱近似得到宽谱NO2-DIAL气溶胶消光和后向散射效应引起的NO2质量浓度反演误差的近似模型,通过对比模拟计算的结果,验证了近似模型评估NO2质量浓度反演误差的可行性。
大气光学 宽谱差分吸收激光雷达 沙氏成像原理 二氧化氮 气溶胶光学特性 
光学学报
2024, 44(6): 0601016
作者单位
摘要
1 南京信息工程大学大气物理学院,中国气象局气溶胶与云降水重点实验室教育部气象灾害重点实验室,江苏 南京 210044
2 上海卫星工程研究所,上海 201109
气溶胶在大气辐射收支平衡、气候变化、降水、云的形成以及环境污染方面扮演着重要的角色。为了实现对气溶胶光学参数的大范围、高精度、定量化测量,2019年3月使用大气环境星气溶胶碳探测激光雷达(ACDL)的机载缩比系统(Air-ACDL)在中国山海关地区开展了机载观测试验。试验完成了不同污染天气、不同高度以及不同地表类型下的多架次观测。将六天飞行试验得到的机载高光谱激光雷达(HSRL)测量的气溶胶光学深度(AOD)分别与地面站点的太阳光度计和卫星遥感数据进行对比分析,其相关系数R均达到0.90以上,其样本数量分别为86与2200。基于机载HSRL的观测数据,提出了适用于Air-ACDL的气溶胶分类方法,并对山海关地区的气溶胶进行了分类研究。使用后向轨迹传输模型、云气溶胶激光雷达和红外探路卫星观测(CALIPSO)气溶胶分类结果,以及Aura卫星臭氧监测仪(OMI)传感器等数据验证Air-ACDL测量的气溶胶分类的可靠性。多架次Air-ACDL观测结果表明:相比于传统激光雷达气溶胶分类方法,基于Air-ACDL的气溶胶分类方法能够对气溶胶进行更加准确的分类;山海关地区地理位置特殊,观测期间,当地气溶胶除由本地供暖等活动产生的城市气溶胶之外,还有受大气传输影响来自内蒙古地区的沙尘气溶胶,以及来自东南渤海地区的海洋气溶胶。
机载高光谱分辨率激光雷达 大气气溶胶 气溶胶光学特性 气溶胶分类 
光学学报
2023, 43(24): 2428005
陈舜平 1,2,3戴聪明 1,3,*刘娜娜 1,3连文涛 1,3,4[ ... ]魏合理 1,3,4
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
3 先进激光技术安徽省实验室,安徽 合肥 230037
4 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
使用气溶胶自动观测网(AERONET)东沙站的长期观测资料,初步建立逐月的南海东沙海域气溶胶光学特性模型。长期观测数据表明,东沙海域气溶胶光学厚度(AOD)基本低于0.5,春秋两季达到峰值,夏季最低。气溶胶粒子的有效半径在春秋两季较小,其余月份在0.5 μm左右。使用三模态对数正态函数拟合区域气溶胶粒径谱,得到细模态半径为0.1 μm,中间模态半径为0.28 μm,粗模态半径为2.2 μm。基于多波段AOD观测数据,评估该模型计算所得AOD光谱和透过率误差,可见和近红外波段透过率的均方根误差(RMSE)为1%~2%,AOD的RMSE为0.01~0.03。结果表明,所建气溶胶模型可以准确描述东沙海域的气溶胶光学特性,满足工程计算的精度要求。
大气光学 气溶胶模式 海洋气溶胶 气溶胶光学特性 AERONET 
光学学报
2023, 43(24): 2401002
作者单位
摘要
1 南京信息工程大学气象灾害预警与评估协同创新中心, 中国气象局气溶胶与云降水重点实验室, 教育部气象灾害重点实验室, 江苏 南京 210044
2 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
3 上海卫星工程研究所, 上海 201109
高光谱分辨率激光雷达能够在无需假设激光雷达比的情况下,实现气溶胶光学参数的高精度定量观测。研制了一台用于气溶胶光学特性观测的机载高光谱分辨率激光雷达,并将其用于机载观测试验。针对气溶胶光学参数反演算法进行相应改进,选取不同飞行区域和不同飞行架次的试验数据进行反演,结合太阳光度计、大气污染物输送扩散轨迹模型HYSPLIT和卫星数据等对气溶胶特性进行分析。分析结果表明,不同区域的气溶胶光学参数有明显差异:在城镇、工厂等人类活动频繁的区域,气溶胶的消光系数最高超过1.2 km -1,激光雷达比随高度变化较大,最大可达60 sr,0~3 km高度层的气溶胶光学厚度集中在0.7~1;山区和海洋区域气溶胶的消光系数集中在0.2~0.8 km -1,激光雷达比随高度变化较小,数值集中在5~30 sr,0~3 km高度层的气溶胶光学厚度集中在0.3~0.7。气溶胶的分布受风、天气、污染过程等气象条件的影响,不同日期同一区域的气溶胶光学特性也受大气污染物输送扩散等因素的影响。
遥感 机载高光谱分辨率激光雷达 碘分子滤波器 大气气溶胶 气溶胶光学特性 
中国激光
2020, 47(7): 0710003
作者单位
摘要
1 齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266001
2 中国气象局气象探测中心, 北京 100081
为了解雾霾天气条件下大气气溶胶的光学特性,利用多波长气溶胶激光雷达在北京海淀气象局的观测数据,反演得到了2017年11月4日至7日持续性雾霾期间大气气溶胶的消光系数、退偏振比和雾霾高度等参数,实现了在雾霾期间对大气的实时监测。结合探空资料数据获取的气象参数,并利用拉格朗日混合单粒子轨迹模式(HYSPLIT)分析了雾霾期间气团的路径来源和走向,分析得出,相对湿度增大、风速低以及逆温层的存在是雾霾形成和持续存在的重要因素。河北一带的污染物输送导致此次北京海淀区的雾霾形成,而西北风为污染物向上扩散消失提供了条件。
大气光学 多波长气溶胶激光雷达 雾霾 气溶胶光学特性 气象参数 后向轨迹追踪 
激光与光电子学进展
2019, 56(24): 240101
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
针对环境领域中最常用的米氏散射激光雷达, 通过讨论气溶胶光学特性反演方法的流程, 分析了影响反演结果准确度的各种不确定性因素。分析结果表明, 为获取高稳定性和高可靠性的探测结果, 需要采用合理的信号去噪方法, 设置合理的累加次数、气溶胶消光后向散射比、标定高度和标定值等。此外, 还需要对反演算法进行定期标定, 主要包括几何重叠因子标定、球载消光仪标定、瑞利散射标定、能见度仪标定、太阳光度计标定、湿度标定、颗粒物浓度标定等。通过这一系列配置和标定后, 多台激光雷达数据可以达到高度的一致性和准确性。
遥感 激光雷达 气溶胶光学特性 消光系数 不确定性 标定 
激光与光电子学进展
2018, 55(9): 092801
牟福生 1,2,*李素文 1李昂 2谢品华 2,3[ ... ]吴丰成 3
作者单位
摘要
1 淮北师范大学物理与电子信息学院,安徽 淮北 235000
2 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230031
3 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
利用2011~2014年北京太阳光度计数据对北京地区的气溶胶光学特性进行了研究。北京地区气溶胶光学厚度(aerosol optical depth, AOD) 全年较高,四年440 nm波长的AOD年均值分别是0.67±0.70, 0.69±0.71, 0.73±0.66, 0.75±0.66。AOD月均值表现出 一定的季节变化,最大值和最小值一般出现在春季和秋季。通过气溶胶类型分类可知,除了春季受沙尘大颗粒气溶胶影响外,北京地区高气溶胶主要 由城市细粒子气溶胶引起,且四季小粒子增长现象明显,其中夏秋季主要为吸湿性增长,其他季节主要为静稳天气下的增长。 对比沙尘和霾天气下气溶胶性质,结果表明:霾天气下AOD一般高于沙尘天气, Hysplit风场后向轨迹模型 结果表明,沙尘天气下气团为穿过蒙古草原和沙漠的西北风场。在灰霾天气下风场风速较小且主要以东南和西南风场为主,高气溶胶状 态为本地积累和外来输送共同作用产生。
气溶胶光学特性 气溶胶分类 太阳光度计 aerosol optical properties aerosol classification sun-photometer 
大气与环境光学学报
2018, 13(2): 88
作者单位
摘要
中国海洋大学 信息科学与工程学院海洋技术系, 山东 青岛 266100
2014年7月至8月在第三次青藏高原大气科学试验的支持下, 分析了夏季那曲地区大气边界层高度日变化特征.采用激光云高仪通过后向散射信号梯度法求得大气边界层高度, 将云顶高度判定为边界层高度时, 那曲地区对流边界层高度最高可达3800 m, 在夜间稳定边界层情况下, 最低只有40 m.采用无线电探空仪数据, 利用位温梯度法、相对湿度梯度法求得大气边界层高度.利用云高仪与探空仪同步实验40天得到的有效数据, 对后向散射信号梯度法与位温梯度法得到的大气边界层高度的相关性进行分析, 相关系数达0.78, 标准偏差为738.84 m.对8组较为异常量据的再分析发现云高仪在晴空探测大气时信噪比存在一定的不足.对比早、晚测量结果可知, 那曲地区大气边界层高度日变化大, 是由于该地区地处内陆海拔较高, 夏季日照辐射相对平原地区较强, 对流和气温强烈的日变化引起大气层结日变化较大.
大气边界层 边界层厚度 激光雷达 气溶胶-光学特性 气溶胶-衰减 Atmosphere boundary layer Boundary layer thickness Lidar Aerosols-optical properties Aerosols-attenuation 
光子学报
2016, 45(5): 0501001
牟福生 1,*李昂 1谢品华 1,2王杨 1[ ... ]吴丰成 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
2 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230031
利用2012年9月~2014年8月年合肥市西北郊的CE318型太阳光度计观测资料,分析了合肥地区气溶胶光学厚度(AOD)和Angstrom波长指数(α)的时间变化特征。结果表明,合肥地区AOD全年较高,2012年9月~2013年8月和2013年9月~2014年8月两个时段的年平均值分别为0.60±0.15和0.73±0.23。春季受沙尘天气影响气溶胶波长指数最小,秋季受西北高空气团影响AOD最低。研究了AOD和大气水汽含量之间的关系,结果表明AOD和大气水汽含量呈正相关关系。利用Hysplit风场轨迹模型对各个季节的风场进行了研究,合肥春季主要受西北气流(约42%)影响,夏季风场主要受偏南风场(约50%)影响,秋季受北风风场(约39%)影响较大,冬季受西北高空气团影响较大。CE318和MODIS对比结果表明,两者具有较好的一致性,相关系数在0.7以上。
气溶胶光学特性 aerosol optical properties MODIS MODIS CE318 CE318 
红外与激光工程
2016, 45(2): 0211003
作者单位
摘要
国家海洋技术中心, 天津 300112
通过PY30-1平台上安装的CE318型自动太阳光度计,利用2011年9月至2012年10月长期观测的数据,分析了南海海域大气气溶胶的光学特性。海上气溶胶光学参数主要包括光学厚度、Angstrom波长指数、复折射指数、单次散射反照率以及散射相函数。开展海上大气气溶胶光学等特性的观测与研究是进行水色卫星定标与检验的关键。结果表明,海上气溶胶基本符合沿海气溶胶模式特征。对海上气溶胶光学特性的了解,可为深入水色卫星的定标与检验提供重要依据。
海洋光学 气溶胶光学特性 南海海域 沿海气溶胶模式 
光学学报
2013, 33(s1): s101004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!