作者单位
摘要
【目的】

针对400 Gbit/s双偏振(DP)-16正交幅度调制(QAM)相干光接收机应用的核心线性跨阻放大器(TIA)实现问题。

【方法】

文章基于先进锗硅异质结双极型互补氧化物半导体(SiGe BiCMOS HBT)工艺实现了一种64 GBaud双通道差分线性TIA。芯片核心由两路完全相同的信号放大通道组成,以输入放大相干接收的I和Q分量。信号放大通道电路采用全差分电压并联负反馈结构作为核心TIA,采用两级差分可变增益放大器(VGA)级联结构实现进一步信号放大,单端输出阻抗50 Ω的电流模逻辑(CML)缓冲器作为输出级。在输入两端,分别引入了独立的直流恢复(DCR)环路以消除输入信号直流分量及差分输出直流失调,并引入了全差分直流失调消除(DCOC)以消除工艺失配产生的输出直流失调,提高电路线性度。为了提高输入动态线性范围,引入了自动增益控制(AGC)电路以自动根据输入信号强度调节TIA跨阻及VGA增益,避免信号饱和失真;为了优化输出阻抗匹配,减小静电放电(ESD)二极管寄生电容影响,输出级采用了三端口桥式-T网络(T-Coil)电感峰化负载结构,以改善输出回损,提高带宽。芯片采用先进SiGe BiCMOS HBT工艺设计制造,裸片尺寸为1.6 mm×1.8 mm,通道间距为625 μm。芯片搭配结电容Cpd=50 fF的光电二极管(PD)及相干接收光路元器件封装成集成相干接收机(ICR)组件进行测试。

【结果】

封测结果表明,该芯片小信号跨阻增益为差分5 kΩ,3 dB带宽为32 GHz,总谐波(THD)小于2%,饱和输入功率达到3 dBm,整个芯片由3.3 V单电源供电,静态功耗仅为250 mW。

【结论】

芯片可用于64 GBaud的相干接收应用,配合DP-16QAM调制,可实现单波400 Gbit/s传输应用。

64 GBaud 差分线性跨阻放大器 可变增益放大器 三端口桥式-T网络 硅异质结双极型互补氧化物半导体 64 GBaud differential linear TIA VGA T-Coil SiGe BiCMOS HBT 
光通信研究
2023, 49(6): 57
作者单位
摘要
1 西安电子科技大学极端环境下装备效能教育部重点实验室, 陕西西安 710126
2 西北核技术研究所, 陕西西安 710024
3 中国科学院新疆理化技术研究所, 新疆乌鲁木齐 830011
针对锗硅异质结双极晶体管(SiGe HBT), 采用半导体三维器件数值仿真工具, 建立单粒子效应三维损伤模型, 研究 SiGe HBT单粒子效应的损伤机理, 以及空间极端环境与器件不同工作模式耦合作用下的单粒子效应关键影响因素。分析比较不同条件下离子入射器件后, 各端口瞬态电流的变化情况, 仿真实验结果表明, 不同工作电压下, 器件处于不同极端温度、不同离子辐射环境, 其单粒子瞬态的损伤程度有所不同, 这与器件内部在不同环境下的载流子电离情况有关。
硅异质结双极晶体管 单粒子效应 极端环境 数值仿真 SiGe HBT Single Event Effect extreme space environment simulation 
太赫兹科学与电子信息学报
2022, 20(9): 869
作者单位
摘要
1 西安交通大学核科学与技术学院,陕西西安 710049
2 西北核技术研究院,陕西西安 710024
3 西安电子科技大学空间科学与技术学院,陕西西安 710126
4 模拟集成电路国家重点实验室,重庆 400060
5 中国科学院特殊环境功能材料与器件重点实验室,新疆乌鲁木齐 830011
异质结带隙渐变使锗硅异质结双极晶体管 (SiGe HBT)具有良好的温度特性,可承受-180~+200 ℃的极端温度,在空间极端环境领域具有诱人的应用前景。然而,SiGe HBT器件由于材料和工艺结构的新特征,其空间辐射效应表现出不同于体硅器件的复杂特征。本文详述了 SiGe HBT的空间辐射效应研究现状,重点介绍了国产工艺 SiGe HBT的单粒子效应、总剂量效应、低剂量率辐射损伤增强效应以及辐射协同效应的研究进展。研究表明,SiGe HBT作为双极晶体管的重要类型,普遍具有较好的抗总剂量和位移损伤效应的能力,但单粒子效应是制约其空间应用的瓶颈问题。由于工艺的不同,国产 SiGe HBT还表现出显著的低剂量率辐射损伤增强效应响应和辐射协同效应。
硅异质结双极晶体管 单粒子效应 总剂量效应 低剂量率辐射损伤增强效应 电离总剂量/单粒子效应协同效应 电离总剂量/位移损伤协同效应 SiGe heterojunction bipolar transistors Single Event Effects Total Ionizing Dose effect Enhanced Low Dose Rate Sensitivity synergistic effect of total ionizing dose and sing synergistic effects of ionizing dose and displacem 
太赫兹科学与电子信息学报
2022, 20(6): 523
作者单位
摘要
运城学院 物理与电子工程系, 山西 运城 044000
硅异质结太阳能电池的制作过程中,所有工艺步骤都会影响其性能。通过扫描电镜、反射率、量子效率及少子寿命测试,逐步优化硅异质结太阳能电池的性能。结果表明,单晶硅片钝化的最佳锥体尺寸约为6~9 μm。利用高质量的本征氢化非晶硅(a-Si:H)薄膜钝化硅片,获得了超过5 ms的少数载流子寿命。采用大带隙p型a-SiCx:H薄膜替代p型a-Si:H薄膜作为发射层,提高电池在较短波长范围内的光响应。通过降低铟锡氧化物的自由载流子吸收,显著改善了长波长区域光响应。综合优化后硅异质结太阳能电池功率转换效率达到21.68%。
太阳能电池 硅异质结 钝化 光响应 功率转换效率 Solar cell Silicon heterojunction Passivation Photoresponse Power conversion efficiency 
光子学报
2021, 50(12): 1223001
作者单位
摘要
1 南昌大学光伏研究院, 江西 南昌 330031
2 常州大学, 江苏省光伏科学与技术国家重点实验室培育建设点, 江苏 常州 213164
目前晶硅异质结太阳电池大多采用刻蚀绒面来减小光学损耗,但该方法工艺繁琐,且重复性和后期镀膜均匀性不佳;同时,绒面增加了载流子的传输路径和复合概率,限制了电池性能的提高。本文利用太阳电池模拟软件OPAL和光学膜系设计软件TFCalc,以平面硅为衬底,设计了一种双层TiO2/SiNx减反膜。考虑到太阳光谱分布和异质结太阳电池的光谱响应,本文以加权平均光学损耗作为评价函数,将TiO2/SiNx双层减反膜与玻璃、衬底作为一体进行了优化,并将本文设计的减反膜与绒面硅上单层ITO减反膜的加权平均光学损耗进行了对比。结果表明,与绒面硅上单层ITO减反膜相比,所设计的双层减反膜的加权平均光学损耗更小,为4.69%,较单层ITO减反膜减小了1.97个百分点,且吸收损耗显著降低。本文研究为平面硅替代绒面硅提供了理论支持。
薄膜 硅异质结太阳电池 ITO 平面硅 TiO2/SiNx 光学损耗 
光学学报
2021, 41(9): 0931001
作者单位
摘要
1 南昌大学光伏研究院, 江西 南昌 330031
2 常州大学, 江苏省光伏科学与技术国家重点实验室培育建设点, 江苏 常州 213164
晶硅异质结太阳电池表面的减反层是ITO薄膜,其低的紫外透过率、高的近红外光学损耗限制了电池效率的提升。为此,本文设计了三层减反膜来减小ITO薄膜的光学损耗。利用光学薄膜膜系设计软件TFCalc、光线追迹程序(OPAL 2)和太阳电池模拟软件 PC1D 对三层减反膜的光学性能和相应电池的电学性能进行了模拟和分析,并对折射率色散效应、晶硅表面形貌以及各膜层的厚度容差进行了讨论。结果表明:考虑折射率色散效应的三层减反膜比ITO薄膜的寄生吸收更小,减反射带宽更大;绒面硅表面减反膜比平面硅表面减反膜的加权平均光学损耗降低了2.43个百分点,相应电池的短路电流密度和转换效率分别提高了0.82 mA/cm 2和0.34个百分点;减反膜中低折射率的SiOx 膜层具有更大的厚度容差范围。
薄膜 三层减反膜 ITO 硅异质结太阳电池 加权平均反射率 光学损耗 
光学学报
2020, 40(24): 2431001
作者单位
摘要
1 河北工业大学信息功能材料研究所, 天津 300130
2 南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室, 光电信息技术科学教育部重点实验室, 天津 300071
硅异质结(SHJ)太阳电池作为备受关注的新型高效太阳电池,是在单晶硅表面沉积非晶硅薄膜制备而成的。将绒面结构的单晶硅衬底应用于异质结太阳电池,可以减少光的反射,增强光吸收的效率,从而提高太阳电池短路电流密度。利用湿法化学腐蚀对单晶硅衬底表面进行制绒,通过优化影响绒面形貌的几个关键参数,包括异丙醇浓度、时间、衬底类型和硅酸钠的含量,最终通过在n型单晶硅衬底上制绒,使波长为1011 nm处最低反射率从制绒前的34.7%降低到了9.14%,将制绒衬底应用到异质结太阳电池上,短路电流由32.06 mA/cm-2 提升到36.16 mA/cm-2,有效地改善了SHJ太阳电池的性能。
光学设计 陷光 制绒 金字塔形貌 反射率 硅异质结太阳电池 
光学学报
2015, 35(2): 0216001
张晋新 1,2,3,*郭红霞 1,2,4文林 1,2,3郭旗 1,2[ ... ]邓伟 1,2,3
作者单位
摘要
1 中国科学院 新疆理化技术研究所, 乌鲁木齐 830011
2 新疆电子信息材料与器件重点实验室, 乌鲁木齐 830011
3 中国科学院大学, 北京 100049
4 西北核技术研究所, 西安 710024
5 电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
对国产锗硅异质结双极晶体管(SiGe HBT)进行了单粒子效应激光微束辐照试验,观测SiGe HBT单粒子效应的敏感区域,测试不同外加电压和不同激光能量下SiGe HBT集电极瞬变电流和电荷收集情况,并结合器件结构对试验结果进行分析。试验结果表明:国产SiGe HBT位于集电极/衬底结内的区域对单粒子效应敏感,波长为1064 nm的激光在能量约为1.5 nJ时诱发SiGe HBT单粒子效应,引起电流瞬变。入射激光能量增强,电流脉冲增大,电荷收集量增加;外加电压增大,电流脉冲的波峰增大;SiGe HBT的单粒子效应与外加电压大小和入射激光能量都相关,电压主要影响瞬变电流的峰值,而电荷收集量主要依赖于入射激光能量。
硅异质结双极晶体管 单粒子效应 激光微束 电荷收集 SiGe heterojunction bipolar transistors singleevent effect laser microbeam charge collection 
强激光与粒子束
2013, 25(9): 2433

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!