杨勇 1,2董浩 1,2桑瑶烁 1,2李志刚 1,2[ ... ]王澍 1,2,*
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230031
细菌拉曼光谱信号弱、相似度高且易被噪声干扰,使用传统机器学习方法对其分类时必须进行繁杂的光谱预处理,效率低下。为提高细菌拉曼光谱分类的准确率和效率,提出了一种基于密集连接的一维卷积神经网络模型Raman-net,无需额外的光谱预处理就能有效完成光谱分类。实验结果表明,Raman-net对Bacteria-ID公开数据集中30种细菌低信噪比拉曼光谱的分类准确率为84.26%,显著高于传统机器学习方法及对比方法。对于碳青霉烯类抗生素敏感和耐药的2种肺炎克雷伯菌表面增强拉曼光谱,Raman-net取得了99.16%的分类准确率。这表明对于细菌的普通拉曼光谱和表面增强拉曼光谱,Raman-net无需光谱预处理就能取得较好的分类效果,为致病菌的拉曼光谱鉴定提供了一种快速有效的方法。
光谱学 拉曼光谱 光谱鉴别 机器学习 致病菌 
激光与光电子学进展
2023, 60(1): 0130003
作者单位
摘要
河南农业大学食品科学技术学院, 河南 郑州 450000
为了探究食源性致病菌芽孢的拉曼特征指纹图谱, 实现快速识别, 该研究以产气荚膜梭菌(C. perfringens)、 艰难梭菌(C. difficile)和蜡样芽孢杆菌(B. cereus)的芽孢为研究对象, 以柠檬酸钠还原法制备的AgNPs溶胶为基底材料, 用SERS技术对芽孢进行拉曼光谱检测, 解析食源性致病菌芽孢的分子结构、 不同芽孢之间的异同之处。 将3种食源性致病菌芽孢的SERS光谱与主成分分析(PCA)和系统聚类分析(HCA)相结合并进行对比分析, 实现不同种属食源性致病菌芽孢的定性识别。 结果表明, 不同食源性致病菌芽孢的SERS光谱的特异性和重现性良好。 芽孢光谱中Ca2+-DPA的拉曼振动峰数量和峰强度占主要地位, 其拉曼振动峰位置在657~663, 818~820, 1 017, 1 389~1 393, 1 441~1 449和1 572~1 576 cm-1波段。 C. difficile spores SERS光谱中Ca2+-DPA的六个特征峰峰强度均高于C. perfringens sporesB. cereus spores, C. perfringens spores次之。 Ca2+-DPA在1 017 cm-1(Ca2+-DPA)处拉曼峰强度在3种芽孢的SERS光谱中均最高且差异明显, 是Ca2+-DPA的主要特征峰, 也是3种芽孢的主要特征峰。 此外, C. perfringens spores在936 cm-1(磷脂N—C拉伸)、 1 294 cm-1(脂质中的CH2变形振动)、 1 609 cm-1(蛋白质中的酪氨酸)和1 649 cm-1(蛋白质中的酰胺I)显示特有拉曼振动峰; C. difficile spores在890 cm-1(=C—O—C=拉伸)显示特有拉曼振动峰。 PCA分析结果显示PC1和PC2方差贡献率分别为51.1%和39.7%, 累积贡献率达90.8%, 可以将所有样本有效区分。 HCA分析可以看出3种芽孢的SERS光谱被分为三个聚类, 3种芽孢各自聚类无交叉干扰。 结合多元统计分析不仅有效实现了3种芽孢之间的区分, 也实现了梭菌属芽孢和杆菌属芽孢的区分, 为食品安全控制提供有效手段。
食源性致病菌芽孢 表面增强拉曼光谱 光谱解析 快速识别 Food-borne pathogenic bacteria spores SERS AgNPs Spectral analysis Rapid identification AgNPs 
光谱学与光谱分析
2022, 42(9): 2774
作者单位
摘要
1 广东医科大学生物医学工程学院生物医学光子学实验室, 广东 东莞 523808
2 广东省分子诊断重点实验室, 广东 东莞 523808
随着抗菌药物广泛应用于临床, 细菌耐药日益严重。 实现快速、 高灵敏、 准确的细菌及其药物敏感性检测是缓解细菌耐药的关键环节。 表面增强拉曼光谱(SERS)具有快速、 灵敏、 无损等优点, 可直接获取分子指纹信息, 它已成为一种有效的细菌及其耐药性检测技术。 不同种类细菌的分子组成和结构存在差异、 抗生素处理前后细菌的特征拉曼信号会发生变化, 这为表面增强拉曼光谱技术在致病菌及其耐药性检测中的应用提供了依据。 基于分子组成与结构的差异, 结合传统多分类数据分析以及机器学习算法, 表面增强拉曼光谱技术可以提供客观的诊断信息。 这篇综述回顾了近年来表面增强拉曼光谱技术对于致病菌及其耐药性检测的研究进展, 阐述了当前表面增强拉曼光谱技术应用于致病菌检测面临的问题。 首先, 讨论了致病菌及其耐药性检测中常用SERS基底的材料和结构: 金纳米粒子、 银纳米粒子、 银包金纳米粒子以及新型纳米材料与纳米粒子结合形成的复合SERS基底。 然后, 概述了SERS检测中捕获细菌的方法, 主要介绍了基于核酸适配体、 免疫磁性分离、 微流控系统以及静电结合的捕获方法, 包括上述捕获方法的原理以及捕获方式, 综述了以上捕获方法的研究进展。 最后, 总结了致病菌SERS光谱的各种数据分析方法, 通过光谱预处理, 特征提取与分类识别, 以及构建致病菌SERS光谱诊断模型, 实现致病菌及其耐药性的检测; 比较了传统的数据分析方法以及机器学习分析方法, 重点介绍了深度学习算法在致病菌及其耐药性SERS检测中的优势与应用。 文章也对表面增强拉曼光谱应用于致病菌及其耐药性检测的关键问题进行了讨论, 并对基于表面增强拉曼技术的致病菌及其耐药性检测方法进行了展望, 以促进表面增强拉曼光谱技术在临床检测中的应用。
表面增强拉曼光谱 致病菌 耐药性 Surface enhanced Raman spectroscopy Pathogenic bacteria Drug resistance 
光谱学与光谱分析
2022, 42(5): 1339
李世芳 1,2何红 1,3葛闯 4,*陈李 1,3徐溢 1,3,*
作者单位
摘要
1 重庆大学 新型微纳器件与系统技术重点学科实验室&光电技术与 系统教育部重点实验室,重庆400044
2 重庆大学 化学化工学院,重庆400044
3 重庆大学 光电工程学院,重庆400044
4 重庆大学肿瘤医院 癌症转移与个体化治疗转化研究重点实验室,重庆00030
针对致病菌快速高效的辨识和检测一直是生命科学、医疗诊断、食品安全和环境监测等领域备受关注的热点。微流控芯片分析技术为细菌等微生物的研究和检测提供了新的、高效的途径和平台,将表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS)光谱检测技术与其结合,成为了具有突出优势的致病菌快速鉴别和检测途径。本文针对基于微流控芯片的SERS分析技术及其应用进行综述,首先对各种SERS增强基底材料进行了介绍和性能比较;然后,系统综述了在微流控芯片上集成SERS基底的方法和技术,分别探讨了在微流控通道中注入纳米金属溶胶的外部注入法,在微流控芯片检测区构建固体纳米结构的内嵌法和在微流控通道中原位制备纳米结构基底的原位制作法;最后,对集成SERS检测技术的微流控芯片分析方法在致病菌定性鉴别和定量检测方面的应用进展予以了综述和展望。
表面增强拉曼散射 纳米增强基底 微流控芯片 致病菌检测 surface enhanced raman scattering (SERS) nano-reinforced substrate microfluidic chip detection of pathogenic bacteria 
光学 精密工程
2022, 30(14): 1643
作者单位
摘要
1 广东医科大学医学技术学院,广东 东莞 523808
2 广东医科大学生物医学工程学院,广东 东莞 523808
近年来,细菌感染性疾病不断发生,抗生素的频繁使用使得耐药细菌的数量显著增多,耐药现象愈发严峻。迫切需要一种高效、准确的检测技术来对致病菌作出判断。不同种属细菌其分子组成和结构不同,表面增强拉曼光谱(SERS)主要由于其能反映细菌特有的光谱指纹而被用于区分和反映细胞状态。SERS对致病菌的检测受到多个因素的影响,本文从三个方面回顾了SERS对致病菌的检测并做一简要综述:首先,从基底的设计方面,总结了不同结构和大小的SERS基底对致病菌的检测;其次,回顾了致病菌的共培养、原位还原和静电结合的非标记检测方式以及标记检测包括外标记和内标记方法对致病菌的SERS检测;最后,结合致病菌拉曼光谱分析方法即传统的多变量统计分析方法和先进的机器学习算法对致病菌加以鉴定并对SERS用于致病菌检测进行了总结和展望。
光谱学 表面增强拉曼光谱 致病菌 标记法 非标记法 
激光与光电子学进展
2022, 59(18): 1800002
杨勇 1,2董浩 1,2王澍 1,2,*桑瑶烁 1,2[ ... ]刘勇 1,2
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
3 安徽农业大学生命科学学院,安徽 合肥 230036
提出一种联合表面增强拉曼散射(SERS)与卷积神经网络(CNN)的方法,并将其用于食源性致病菌的快速鉴定。以带正电荷的银纳米颗粒(AgNPs)为SERS 基底,采集了金黄色葡萄球菌、大肠杆菌、副溶血性弧菌以及单增李斯特菌的SERS指纹谱,并在这些数据上训练了一个包含11个一维卷积层的残差网络ResNet11用于这4种病原菌SERS指纹谱的分类识别。实验结果表明:AgNPs是一种优秀的SERS增强基底,可在624 cm-1、730 cm-1等波段增强4种病原菌的主要拉曼峰;构建的ResNet11分类器对107 mL-1菌液分子浓度下采集的SERS指纹谱取得了99.30%的分类识别准确率,并且对103 mL-1菌液分子浓度下采集的SERS指纹谱取得98.00%的识别准确率。
生物光学 食源性致病菌 表面增强拉曼散射 带正电荷的银纳米颗粒 卷积神经网络 
中国激光
2022, 49(15): 1507405
作者单位
摘要
上海海洋大学食品学院, 上海 201306
食源性致病菌是引发和威胁公众健康的主要因素之一。 由于食源性致病菌种类繁多, 常规检测方法复杂耗时要求高, 因此迫切需要一种更加快速精确的致病菌检测技术。 在传统红外光谱检测致病菌的流程中, 如经典的溴化钾压片法, 除了压片本身的操作之外通常还需对样品进行冷冻干燥(约需2 d)等耗时前处理过程, 因而不利于高通量快速检测。 本研究利用硒化锌薄膜法, 在硒化锌窗片上直接滴加菌液、 低温(48 ℃)烘干后进行原位检测, 无需漫长的冻干处理, 整个检测过程在50 min之内。 同时, 检测所需样品量少(10 μL)无需研磨等物理破坏性的制样过程, 避免了常规溴化钾压片法中研磨颗粒粗细、 制片厚薄误差及易碎片、 吸潮等的不利影响。 四种常见食源性致病菌(大肠杆菌DH5α; 沙门氏菌CMCC 50041; 霍乱弧菌SH04; 金黄色葡萄球菌SH10)的硒化锌薄膜法与溴化钾压片法红外谱图对比分析表明: 在相同的峰值检测阈值下(透过率大于0.05%), 本研究所采用的方法获得的二阶导数图谱在900~1 500 cm-1范围内可被识别的特征峰个数比溴化钾压片法明显增多(硒化锌薄膜法共计81个, 溴化钾压片法共计58个), 特征峰在多个位置强度显著增加(1 119, 1 085和915 cm-1等), 且可将溴化钾压片法中较宽的单峰或不明显的双峰显示为较明显的双峰(大肠杆菌DH5α: 1 441, 1 391和1 219 cm-1等; 沙门氏菌CMCC 50041: 1 490, 1 219和1 025 cm-1; 霍乱弧菌SH04: 1 441和1 219 cm-1; 金黄色葡萄球菌SH10: 1 491, 1 397和1 219 cm-1), 说明硒化锌薄膜法可以提高图谱分辨率及信噪比。 基于硒化锌薄膜法的原位红外光谱法对常见食源性致病菌整体快速高通量检测将具有巨大的应用前景。
食源性致病菌 红外光谱 样品前处理 原位检测 硒化锌薄膜法 Foodborne pathogens Infrared spectroscopy Sample pretreatment In-situ detection ZnSe film transmission method 
光谱学与光谱分析
2021, 41(2): 419
作者单位
摘要
1 上海应用技术大学计算机科学与信息工程学院, 上海 201418
2 军事兽医研究所, 吉林 长春 130062
药品食品的安全问题一直是人们关注的重点。相比于传统的食源性致病菌光谱检测方法,拉曼光谱法具有检测范围广、检测灵活、光谱特征突出等特点。本文以常见的食源性致病菌为研究对象,利用拉曼光谱仪采集了11种食源性致病菌样品的132个拉曼光谱数据,提出了一种基于主成分分析和随机森林算法的分类模型。实验结果表明,主成分分析结合随机森林算法的分类模型可以将食源性致病菌区分开,且分类准确度可达到91.36%。
光谱学拉曼光谱 机器学习 食源性致病菌检测 主成分分析 随机森林 
中国激光
2021, 48(3): 0311002
王成 1,*焦彤 1陆雨菲 2徐康 1[ ... ]张大伟 4
作者单位
摘要
1 上海理工大学生物医学光学与视光学研究所, 医用光学技术与仪器教育部重点实验室, 上海 200093
2 复旦大学上海医学院附属中山医院肾病科, 上海市肾病与透析研究所, 上海市肾脏疾病与血液净化重点实验室,上海市重中之重肾脏疾病临床医学中心, 上海 200030
3 上海理工大学医疗器械与食品工程学院食品微生物研究所, 上海 200093
4 教育部光学仪器与系统工程研究中心, 上海理工大学现代光学系统重点实验室, 上海 200093
食源性致病菌的快速检测是解决食品安全问题最有效的途径之一。为了实现对食源性致病菌的快速、高效、无标记检测和分类,提升了原有的光纤共聚焦后向散射光谱系统的性能,将其光场直径减小到适合较小生物样品的水平,即达到单菌水平检测。在无标记条件下,测定了三种常见的形态相近的食源性致病菌(肠炎沙门氏菌、大肠杆菌、鼠伤寒沙门氏菌)的后向散射光谱。选取500~800 nm范围的特征波段,将主成分分析和模糊聚类分析相结合,建立多元分析模型。主成分分析结果表明,所得的前5个主成分已经包含80.41%的特征区光谱信息。将前5个主成分分量作为模糊聚类分析的变量。由所求得的隶属度矩阵可知,三种细菌聚类结果的准确率均为100%。该结果说明光纤共聚焦后向散射光谱方法结合主成分分析和聚类分析法能够快速、高效、无标记地对单个细菌进行分析和分类。
生物光学 后向散射显微光谱 食源性致病菌 主成分分析 模糊聚类分析 分类 
中国激光
2020, 47(2): 0207030
冯春 1,2赵南京 1,3,*殷高方 1甘婷婷 1[ ... ]刘文清 1,3
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽大学, 安徽 合肥 230601
4 合肥学院, 安徽 合肥 230601
水体致病菌的快速识别和检测对于水质安全预警具有重要意义。以大肠埃希菌、肺炎克雷伯氏菌、金黄色葡萄球菌和鼠伤寒沙门氏菌为研究对象,对其多波长透射光谱进行测量,提出了一种基于相似学原理、余弦相似度、皮尔逊相关系数和联合相似度算法的水体细菌种类识别方法。结果表明:不同的相似度算法对不同细菌的光谱差异性的敏感度不同,相似学原理对肺炎克雷伯氏菌的识别率最高,可达98.2%;余弦相似度和皮尔逊相关系数对金黄色葡萄球菌的识别率均为100%;联合相似度算法可实现不同算法的优势互补,有效提高识别结果的可靠性与稳定性,对低浓度肺炎克雷伯氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌和大肠埃希菌的识别率分别为98.2%、100%、94.1%和91.4%,对较高浓度的上述4种细菌的识别率分别为100%、100%、100%和96%。
光谱学 水体致病菌 多波长透射光谱 相似度算法 种类识别 
光学学报
2020, 40(3): 0330002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!