作者单位
摘要
1 华北电力大学 新能源电力系统国家重点实验室,北京 102206
2 华北电力大学 电力与电子工程系,河北 保定 071003
结合等离子体表面刻蚀方法与梯度改性方法,实现了氧化铝/环氧树脂表面的等离子体梯度刻蚀。利用扫描电子显微镜(SEM)、表面轮廓仪、X射线光电子能谱分析(XPS)、高阻计、闪络电压和表面电位测试系统,对比了未处理、等离子体均匀刻蚀、等离子体梯度刻蚀三种情况的样片表面形貌、化学元素和电气参数,研究了等离子体梯度刻蚀对沿面闪络性能的提升机理。结果表明,等离子体表面刻蚀可提升环氧树脂表面粗糙度、提高样片表面电导率、浅化陷阱能级以及提升沿面闪络电压。等离子体梯度刻蚀对闪络电压的提升效果要优于等离子体均匀刻蚀,相比于未处理样片最大可提升26.5%。分析认为针-针电极的电场分布可划分为三结合点处附近的高场强区和电极之间的低场强区,加快高场强区的表面电荷消散速率并适当控制低场强区表面电荷迁移速率,可以最大程度地提升样片整体的沿面闪络性能。
等离子体 表面刻蚀 环氧树脂 梯度改性 沿面闪络 表面电荷 plasma surface etching epoxy resin gradient modification surface flashover surface charge 
强激光与粒子束
2021, 33(6): 065016
作者单位
摘要
北京工业大学激光工程研究院, 北京 100124
248 nm准分子激光直接刻蚀钠钙玻璃微通道来制作生物芯片具有较大优势和潜力, 但目前存在易发生碎裂、微通道底面处粗糙度高等问题。采用248 nm准分子激光束以静态刻蚀及扫描直写刻蚀两种方式刻蚀钠钙玻璃来对低裂损工艺进行研究。首先通过实验研究了激光加工玻璃的工艺参数与玻璃微通道的刻蚀质量之间的关系, 然后分析了248 nm准分子激光刻蚀钠钙玻璃的裂损刻蚀机理, 最后通过变换工艺参数来设计新的加工工艺流程以改善加工质量。实验结果表明, 随着刻蚀处激光能量密度的增加, 玻璃微通道的边缘裂损程度增大, 并且刻蚀表面粗糙度增大, 刻蚀质量下降; 另外发现激光刻蚀后的粗糙表面可以增加玻璃材料对入射激光能量的吸收率, 从而降低了激光刻蚀玻璃材料的阈值, 较低的激光能量密度可降低刻蚀面的粗糙度。最后工艺流程改进实验, 所加工的微通道质量得到改善, 玻璃微通道边缘裂损尺寸小于5 μm, 底面粗糙度Ra值可降低至1.5 μm, 研究结果将对激光加工玻璃微结构的质量改善提供一定的参考。
准分子激光微加工 玻璃表面刻蚀 玻璃微通道 生物芯片 excimer laser processing glass surface etching glass micro-groove processing bio-chip 
应用激光
2017, 37(4): 586
作者单位
摘要
华中科技大学 武汉光电国家实验室, 武汉 430074
为了得到较理想的激光刻蚀结果, 采用355nm固体紫外激光, 分别在空气与水中进行了氧化铝陶瓷片激光刻蚀实验。对激光主要参量如脉冲能量密度、激光扫描速率、激光重复频率等对水下刻蚀深度和质量的影响进行了对比研究; 对激光刻蚀的机理以及水辅助刻蚀的物理过程进行了分析, 分别得到了紫外激光在空气中与水下的刻蚀形貌与不同激光参量下的刻蚀深度数据。结果表明, 水辅助激光刻蚀可以提高刻蚀效率, 改善刻蚀质量; 水下激光刻蚀深度与激光的脉冲能量密度、加工速率、重复频率和水的深度等参量有密切的关系; 水辅助激光刻蚀过程中水的冷却作用以及产生的空泡有效防止去蚀材料的二次黏附, 避免变质层的形成, 既提高了刻蚀质量, 同时也增加了刻蚀深度。
激光技术 水辅助加工 氧化铝陶瓷 表面刻蚀 laser technique water-assisted machining alumina ceramics surface etching 
激光技术
2014, 38(3): 330
作者单位
摘要
中山大学物理与工程技术学院, 广东 广州 510006
介绍了利用激光制备多晶硅表面织构的研究结果。采用激光在硅片表面刻蚀,然后利用化学方法去除残渣和损伤,制得均匀的表面陷光结构。通过扫描电子显微镜,Hitachi U-4100分光光度计和Semilab WT2000少子寿命仪分析了表面织构化后硅片的表面形貌、反射率和少子寿命。通过调节激光和化学腐蚀参数得到很好的陷光效果,表面反射率最低可以降到约10%。但是激光刻蚀对硅片性能仍有一定损伤,有待改进。激光表面织构为多晶硅的减反射处理提供有效的途径。
激光材料处理 表面织构 表面刻蚀减反射 多晶硅太阳电池 
激光与光电子学进展
2010, 47(1): 011401
作者单位
摘要
山东师范大学物理与电子科学学院, 济南 250014
利用波长为248 nm的准分子激光束在不同激光能量密度下照射聚四氟乙烯(PTFE)材料的表面,并用扫描电镜(SEM)、X射线光电子能谱(XPS)、拉曼(Raman)光谱等手段对激光处理前后样品的表面形貌、化学成分和结构进行测量和分析,进而对激光与聚四氟乙烯相互作用的机理进行了研究。实验结果表明,激光辐照使聚四氟乙烯表面产生去氟效应,导致表面碳化、分子链的交联以及含氧基团的产生,随着激光能量密度的增加,C=C双键逐渐形成。这些结构的变化可以导致表面硬度和粘结性增强。激光能量密度的大小对照射后样品表面的物理性质和化学结构有着重要的影响,它是聚合物表面激光改性和烧蚀的关键因素。
激光与物质相互作用 激光表面改性 激光表面刻蚀 聚四氟乙烯 
光学学报
2006, 26(7): 1073

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!