作者单位
摘要
上海理工大学 光电信息与计算机工程学院, 上海 200093
单分子免疫检测,是指将免疫复合物限制在极小的体积内,对产生的信号进行计数,是一种“数字化”的免疫检测技术。单分子免疫检测仪的核心类似于一个荧光显微系统,但普通的荧光显微镜结构复杂,且与生物芯片规格无法匹配,不能很好地满足检测需求。针对自行研制的生物芯片规格,合计了一套高性能的单分子免疫检测光学系统。根据设计要求,确定了合适的初始结构; 在荧光显微系统原理和像差分析理论的基础上,使用光学设计软件Zemax对系统进行反复优化设计; 设计出了满足单分子免疫检测成像要求的光学系统。系统的成像部分由15片折射透镜组成,工作距离为4mm,放大倍率为-4.52,调制传递函数值在奈奎斯特频率73lp/mm处均大于0.44,畸变为0.8%,照明部分采用柯勒照明方式,在整个视场范围内,物面上的照度均匀度达到97%。整个系统采用国产常规玻璃,有利于加工和降低成本。经优化后的高分辨率荧光显微系统结合当前发展成熟的全自动化检测技术,可以极大提高单分子免疫检测的检测灵敏度和准确率。
单分子免疫检测 生物芯片 光学设计 荧光成像系统 照明设计 高分辨率 single molecule immunoassay biochip optical design fluorescence imaging system lighting design high resolution 
光学技术
2023, 49(4): 497
常松涛 1,2夏豪杰 1,2,*
作者单位
摘要
1 合肥工业大学 仪器科学与光电工程学院,安徽合肥230009
2 测量理论与精密仪器安徽省重点实验室,安徽合肥30009
时间延迟积分(Time Delay Integration, TDI)图像传感器具有高速、高灵敏度等特点,广泛应用于高通量、大视场的荧光显微成像系统中。显微物镜视场内响应均匀是精确获取荧光能量分布的基础,为提高系统成像质量和测量准确度,研究了适用于TDI荧光显微成像系统的平场校正或响应非均匀性校正方法。根据TDI荧光成像系统的工作原理推导激光诱导荧光成像模型,分析图像均匀性退化机理。提出一种基于微阵列生物芯片的两步式校正方法,将系统响应非均匀性分为高频和低频部分分别校正,高频部分采用传统的两点校正方法,低频部分采用微阵列生物芯片校正。基于高通量TDI荧光显微成像系统开展实验,执行并验证本文的校正方法。实验结果表明:本文方法将TDI荧光成像系统的响应非均匀性由25.21%降低至2.87%,显著提高了系统性能。本文提出的校正方法能够满足TDI荧光显微成像系统的平场校正需求,具有一定的应用价值。
荧光显微成像 时间延迟积分 非均匀性校正 微阵列生物芯片 fluorescence microscopy imaging time delay integration nonuniformity correction microarray biochip 
光学 精密工程
2022, 30(5): 527
作者单位
摘要
1 清华大学深圳研究生院生物医学工程研究所, 广东 深圳 518055
2 清华大学深圳研究生院光学检测与成像实验室, 广东 深圳 518055
3 深圳市药品检验研究院(深圳市医疗器械检验中心), 广东 深圳 518057
4 深圳市计量质量检测研究院, 广东 深圳 518055
随着医疗诊断需求的增加, 生物分子检测技术越来越受到人们的重视, 液相生物芯片技术作为一种高通量, 多通道的分子检测手段在近几年得到了飞速发展。 通过层层自组装方法制备以微片为载体的拉曼光谱编码液相生物芯片, 并利用自行搭建的一套高灵敏度、 高分辨率的光学系统, 实现对液相生物芯片的定性与定量分析。 光学系统由拉曼光谱检测系统与荧光显微成像系统耦合而成。 在拉曼光谱检测系统中激光器发射出785 nm波长的激光, 通过二向色镜, 带反反射镜与物镜汇聚到样品上, 样品产生的拉曼散射光, 经物镜, 带反反射镜, 二向色镜与拉曼滤波片, 最后通过凹透镜聚焦到光谱仪的狭缝上, 光谱仪色散实现在线阵CCD上拉曼光谱的获取。 荧光显微成像系统应用光学成像原理, 通过调节凹透镜与405 nm的激发光之间的距离, 使激发光通过物镜均匀的照射到样品之上, 样品激发出的荧光, 通过物镜, 带反反射镜, 二向色镜, 滤波片与相应的凹透镜, 最后成像到面阵CCD上。 改进传统便携式拉曼光谱检测系统光路并选用相应波段的带反反射镜与焦距20倍的物镜完成拉曼光谱检测系统与荧光显微成像系统的耦合。 为了减少两路系统之间的相互影响选用合适的二向色镜以及滤波片, 在提高耦合系统获取数据的准确性中有着重要的作用。 该系统通过对反应之后的液相生物芯片进行拉曼光谱检测, 以完成对每个编码玻片的定性识别, 即解码; 同时激发反应后液相生物芯片的荧光并采集荧光强度图, 根据每个解码玻片上的荧光强度值完成对目标检测物的定量分析。 区别于传统荧光编码液相生物芯片, 拉曼光谱编码具有稳定性更强, 光谱分辨率更高等优点。 该光学系统集拉曼光谱检测系统与荧光显微成像系统于一体, 解决了目前未有基于拉曼编码的液相生物芯片的检测系统的问题, 并且可同时对多种目标物进行识别和定量分析, 提升了实验结果的准确性。
液相生物芯片 光学系统 拉曼光谱编码 荧光强度 定性与定量分析 Suspension array Optical system Raman spectroscopy-encoded Fluorescence intensity Qualitative and quantitative analysis 
光谱学与光谱分析
2019, 39(10): 3021
作者单位
摘要
北京工业大学激光工程研究院, 北京 100124
248 nm准分子激光直接刻蚀钠钙玻璃微通道来制作生物芯片具有较大优势和潜力, 但目前存在易发生碎裂、微通道底面处粗糙度高等问题。采用248 nm准分子激光束以静态刻蚀及扫描直写刻蚀两种方式刻蚀钠钙玻璃来对低裂损工艺进行研究。首先通过实验研究了激光加工玻璃的工艺参数与玻璃微通道的刻蚀质量之间的关系, 然后分析了248 nm准分子激光刻蚀钠钙玻璃的裂损刻蚀机理, 最后通过变换工艺参数来设计新的加工工艺流程以改善加工质量。实验结果表明, 随着刻蚀处激光能量密度的增加, 玻璃微通道的边缘裂损程度增大, 并且刻蚀表面粗糙度增大, 刻蚀质量下降; 另外发现激光刻蚀后的粗糙表面可以增加玻璃材料对入射激光能量的吸收率, 从而降低了激光刻蚀玻璃材料的阈值, 较低的激光能量密度可降低刻蚀面的粗糙度。最后工艺流程改进实验, 所加工的微通道质量得到改善, 玻璃微通道边缘裂损尺寸小于5 μm, 底面粗糙度Ra值可降低至1.5 μm, 研究结果将对激光加工玻璃微结构的质量改善提供一定的参考。
准分子激光微加工 玻璃表面刻蚀 玻璃微通道 生物芯片 excimer laser processing glass surface etching glass micro-groove processing bio-chip 
应用激光
2017, 37(4): 586
杨丕胤 1,2,*甘振华 2,3高跃明 1,2
作者单位
摘要
1 福州大学 物理与信息工程学院, 福建 福州 350116
2 福建省医疗器械和医药技术重点实验室, 福建 福州 350116
3 福州大学 电气工程与自动化学院, 福建 福州 350116
鉴于传统生物芯片检测装置结构较复杂,共聚焦逐点扫描速度较慢,设计了一种使用激光光源、二维高速振镜和冷却型CCD相结合的新装置,并且建立相应的检测数学模型。新装置以STM32为控制核心,采用弓字型扫描方式采集载玻片上的荧光信号。实验对同一片载玻片上的Cy5荧光染料进行五个不同位置的扫描,并由冷却型CCD曝光采集图片。经实验得到了五个相应位置的灰度图像,通过公式推导建立了检测数学模型并用其进行图像灰度校正,校正后的图像灰度误差在2%以内,可以满足光强一致性的要求。
生物芯片 二维高速振镜 冷却型CCD相机 图像灰度校正 biological chip two-dimensional high speed vibrating mirrors cooling CCD camera STM32 STM32 gamma correction 
光学仪器
2017, 39(2): 70
作者单位
摘要
1 北京工业大学激光工程研究院, 北京 100124
2 北京保利星数据光盘有限公司, 北京 100070
利用准分子激光微加工技术与模塑技术相结合的方法制造微流控芯片。用准分子激光在玻璃基胶层上刻蚀出加工质量较高的微流控生物芯片形貌,通过电铸技术对微流控芯片进行复制,得到反向金属模具。用金属模具通过注塑成型技术用聚碳酸酯注塑出微流控芯片。系统研究了准分子激光的能量密度和工作台移动速度对胶层微通道加工质量的影响;测量并分析了激光刻蚀加工出的微流控芯片原型、电铸的反向金属模板和注塑成型后的微流控芯片的轮廓精度和表面粗糙度,上表面尺度偏差不大于2 μm,底面粗糙度小于20 nm。对注塑出的微流控芯片和激光直写刻蚀的几何结构相同的微流控芯片的流动性能进行比较测试。在流速较小时,用激光微加工技术与模塑技术相结合的方法加工的微通道比准分子激光直写法所加工的微通道流动性能更好。
激光技术 准分子激光 微加工 模塑技术 微流控生物芯片 
中国激光
2011, 38(9): 0903004
作者单位
摘要
清华大学 深圳研究生院 光学检测与成像实验室,广东 深圳 518055
为了克服目前生物芯片荧光检测方法中诸如系统结构复杂、检测速度慢、灵敏度低、成本高等缺点,提出了一种新型生物芯片荧光检测方法——线扫描准共焦荧光成像法,并搭建了初步原理性装置。用线扫描代替共聚焦中的点扫描,将二维扫描变为一维扫描,在保持高灵敏度的同时,增加了探测速度,简化了系统,降低了成本。为了验证方法的可行性,使用搭建的原理性装置对手工点样的低密度DNA生物芯片进行了荧光成像检测。实验结果显示,系统的空间分辨率<18 μm,在使用像素平均法降噪后,测量浓度为0.03 μmol/l的探针溶液所得信噪比为5.5×102。这项技术综合了面成像检测方法的低成本、结构简单的优势和点共焦方法具有的高分辨率的优点,适合在实验室中对生物芯片进行检测研究。
线扫描 生物芯片 微阵列 荧光成像 line scanning biochip microarray fluorescence imaging 
光学 精密工程
2010, 18(5): 1028
作者单位
摘要
1 清华大学 深圳研究生院光学检测与成像实验室,广东 深圳 518055
2 第三军医大学 大坪医院检验科,重庆 400042
3 清华大学 深圳研究生院 生命学部,广东 深圳 518055
在此前曾提出过一种新型二维折射率探测方法——并行扫描光谱表面等离子体共振(surface plasmon resonance,SPR)成像方法。 在这种方法中,使用线形光照明,CCD得到的图像包含SPR光谱信息和一维空间信息,进而通过计算可得到折射率的一维分布信息。 通过一维扫描,就能够得到整个被扫描区域内的折射率二维分布信息。 该方法具有高灵敏、高通量的优点,适合微阵列(microarray)的检测,并完善了这种方法的数据处理过程,使用空气折射率作为参考,消除了无法精确控制入射角的难题。 使用该方法对手工点制的军团菌mip DNA探针微阵列进行了检测,证明了这种方法高灵敏无标记地探测微阵列的可行性。 我们得到的军团菌mip DNA探针制备浓度与其等效折射率的关系,这对基于SPR的微阵列技术的发展有着重要的参考意义。
光谱 成像 微阵列 生物芯片 SPR SPR Spectral Imaging Microarray Biochip 
光谱学与光谱分析
2010, 30(1): 154
作者单位
摘要
南京理工大学 微系统研究室,江苏 南京 210094
为了解决现有的微喷点技术中外接驱动设备过于庞大,MEMS技术制作的微喷头结构复杂,与生物样品的兼容性差等问题,提出了新型脉冲惯性力驱动方式和无热源、无外部加压装置的微喷点系统用于微流体数字化喷点技术。介绍了微流体数字化喷点技术的驱动原理,搭建了微喷点系统的实验平台;然后,实验研究了样品均一性和驱动参数对微喷点的影响,并对实验数据进行分析和总结;最后,用黏度为4.13 mPa·s的点样液制作了密度为4 000点/cm2的中等密度微阵列。实验结果表明:样品点直径<100 μm,变异系数CV<8%,完全可以满足微阵列制备技术的密度、样品点尺度和均一性的要求,可供小型实验室使用。
微流体 微喷点 微阵列 生物芯片 microfluids micro dispensing technology microarray biological chip 
光学 精密工程
2009, 17(8): 1902
作者单位
摘要
1 The Singapore-MIT Alliance (SMA),Singapore 117576
2 Department of Mechanical Engineering,National University of Singapore,Singapore 117576
3 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4 Department of Physics, National University of Singapore, Singapore 117542
5 Department of Pharmacy, National University of Singapore, Singapore,Singapore 117543
提出了生物分子在深度周期性变化纳米流控通道中输运的理论模型.该系统利用不同大小的非各向同性粒子处在两个平面组成的狭小空间时转动自由度受限制程度(熵受限)的不同来实现带电粒子的分离.基于一维简化模型,建立了有效迁移率与通道尺寸、分子大小以及外电场强度的关系的解析解,用于表明这些因素如何决定分子分离的效果.算例表明对于50,150和300bp的DNA片段,在低电场强度下,迁移率误差值在5 %以下.该简化模型可用于分析和优化实际的纳滤分离系统,而无需做复杂的数值模拟,省去了大量的物理实验过程.
电泳 分离技术 纳流系统 熵受限 生物分子分离 生物芯片 DNA DNA electrophoresis nanofluidics entropy barrier biomolecule separation ogston sieving 
光学 精密工程
2009, 17(6): 1403

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!