顾薛苏 1殷杰 1,*王康龙 1崔崇 2[ ... ]黄政仁 1,4,*
作者单位
摘要
1 1.中国科学院 上海硅酸盐研究所, 上海 200050
2 2.南京理工大学 材料科学与工程学院, 南京 210094
3 3.西北工业大学 材料学院, 西安 710072
4 4.中国科学院 宁波材料技术与工程研究所, 宁波 315201
碳化硅(SiC)陶瓷作为一种高性能结构功能一体化的陶瓷材料, 在航空航天、核能工业和制动系统等领域应用广泛。然而, 传统的制造方法无法满足大尺寸复杂结构SiC陶瓷日益增长的市场需求, 例如发动机喷嘴、襟翼和涡轮叶片等。黏结剂喷射(BJ)3D打印突破了传统成型的约束, 可以提供新的制造思路。本工作采用颗粒级配SiC的思路, 基于级配理论优化较佳的颗粒度配比, 研究了BJ打印对级配前后SiC陶瓷素坯及烧结体性能的影响。研究发现, BJ打印级配后的SiC素坯经过一次前驱体浸渍裂解(PIP)处理, 能够快速制备抗弯强度最大达到(16.70± 0.53) MPa的SiC素坯, 相比采用20 μm中位径未级配的样品提高了116%。进一步采用液相渗硅制备了致密的SiC陶瓷, 其密度、抗弯强度、弹性模量和断裂韧性分别达到(2.655±0.001) g/cm3, (285±30) MPa, (243±12) GPa和(2.54±0.02) MPa·m1/2。XRD分析表明, SiC烧结体主要以3C-β-SiC晶为主。本研究基于颗粒级配的原料, 采用黏结剂喷射打印, 结合一次浸渍裂解与液相渗硅制备工艺, 高效可靠地制备了高性能SiC陶瓷材料。
碳化硅 颗粒级配 黏结剂喷射打印 前驱体浸渍裂解 silicon carbide particle grading binder jetting printing precursor impregnation and pyrolysis 
无机材料学报
2023, 38(12): 1373
作者单位
摘要
1 华中科技大学材料科学与工程学院材料成形与模具技术国家重点试验室,武汉 430074
2 华中科技大学材料科学与工程学院材料成形与模具技术国家重点试验室,武汉 430074,
SiC陶瓷凭借其高强度、高硬度和低密度等优势,在航空航天、核电工业等领域有着广阔的应用前景。但由于SiC加工难度高、韧性低,阻碍了其广泛应用。为解决上述问题,本研究采用黏结剂喷射增材制造(BJAM)结合液硅反应熔渗技术(LSI)制备了不同碳化硅晶须含量(SiCw)的SiCw/SiC复合材料。结果表明,当SiCw含量达到7.5% (体积分数)时,材料的弯曲强度和断裂韧性达到最大值分别为215.29 MPa和3.25 MPa?偸m1/2,硬度则在SiCw为5%达到23.06 HV的峰值。但当SiCw含量继续升高后,材料内部残余硅相含量提升,力学性能发生恶化。对打印初坯进行2次增碳可有效降低材料内部硅相含量,弯曲强度、断裂韧性和硬度最大分别提升10.15%、10.46%和10.58%。引入的SiCw通过偏折裂纹、拔出和折断等方式起到了对复合陶瓷材料的增强增韧作用。
黏结剂喷射 碳化硅 碳化硅晶须 液硅反应熔渗 断裂韧性 增材制造 binder jetting silicon carbide silicon carbide whisker reaction sintering fracture toughness additive manufacturing 
硅酸盐学报
2023, 51(12): 3159
作者单位
摘要
1 福建工程学院材料科学与工程学院,福州 350118
2 中材高新氮化物陶瓷有限公司,淄博 255000
3 中材人工晶体研究院有限公司,北京 100018
4 中材高新材料股份有限公司,北京 100102
采用注射成型与气压烧结结合的工艺,可以低成本、大批量制备出体积小、精度高的陶瓷异形件。本文以低密度聚乙烯(LDPE)和乙烯-醋酸乙烯共聚物(EVA)为黏结剂,在注射温度165 ℃、注射压力85 MPa的条件下制备氮化硅坯体,通过热脱脂工艺和烧结动力学测试,得到了完整的氮化硅注射成型工艺路线,并研究了喂料固含量对坯体密度、烧结密度和维氏硬度的影响,以及喂料在140~160 ℃时的非牛顿指数变化。结果表明:喂料的最佳固含量为52.42%(体积分数),该条件下制备的氮化硅注射坯体密度为2.10 g/cm3,烧结密度为3.23 g/cm3,维氏硬度为(15.24±0.34) GPa;喂料在160 ℃时的非牛顿指数最小,即在该温度下喂料的流变性最好。
氮化硅 注射成型 黏结剂 固含量 热脱脂 气压烧结 维氏硬度 silicon nitride injection molding binder solid content thermal degreasing pressure sintering Vickers hardness 
硅酸盐通报
2023, 42(8): 2915
作者单位
摘要
1 陕西科技大学材料科学与工程学院, 西安 710021
2 蒙娜丽莎集团股份有限公司, 佛山 528211
作为一种轻薄、低能耗的功能化产品, 陶瓷薄板因强度低而应用受限, 如何对其进行低成本增强成为工业领域研究热点。本文以构筑“纤维布-黏结剂-陶瓷薄板”多层复合结构作为切入点, 将多种工业级纤维布、黏结剂和陶瓷薄板进行二次后加工复合, 制备了兼具低成本和优异力学性能的复合型陶瓷薄板, 探究了其断裂面微观形貌及断裂机理。经研究表明, “碳纤维布-环氧树脂-陶瓷薄板”复合型陶瓷薄板具有最佳界面结合强度及力学性能, 其抗弯强度和承载冲击能量分别为85.26 MPa和1.45 J, 与陶瓷薄板坯体相比, 性能提升幅度分别高达22.98%和141.67%。“纤维布-黏结剂-陶瓷薄板”多层复合结构能够有效提升陶瓷薄板综合力学性能, 陶瓷薄板内部存在微裂纹拓展、纤维偏转等多种良性强韧化机制。
陶瓷薄板 复合结构 纤维布 黏结剂 断裂机理 力学性能 thin ceramic tile composite structure fabric binder fracture mechanism mechanical property 
硅酸盐通报
2022, 41(12): 4419
作者单位
摘要
1 江苏联合职业技术学院无锡交通分院, 江苏 无锡 214151
2 上海健康医学院, 上海 201318
3 青岛理工大学机械与汽车工程学院, 山东 青岛 266520
利用激光熔覆技术在42CrMo钢基体表面制备镍基碳化钨增强涂层, 通过添加松香酒精溶液、醋酸纤维素和丙酮的混合溶液以及水玻璃的水溶液三种不同的黏结剂, 研究在不同黏结剂下激光熔覆镍基碳化钨增强涂层的显微组织、元素组成、物相组成、显微硬度及耐磨性能。试验结果表明: 激光熔覆涂层的物相成分为γ-Ni(Fe)、Ni3Fe、WC、Cr23C6、Cr7C3; 在以松香酒精溶液为黏结剂时, 得到的涂层底部为胞晶和一些树枝状的枝晶, 组织分布较致密、均匀, 涂层中部多为一些树枝状的枝晶; 平均硬度为739.4 HV, 平均摩擦因数为0.53, 平均磨损量为14.07×10-3 mm3, 相较于基体分别减小了约13%和68.5%, 磨损形式为轻微的磨粒磨损和疲劳磨损, 提升了涂层的耐磨性能。
激光熔覆 黏结剂 显微组织 硬度 耐磨性 laser cladding binder microstructure microhardness wear resistance 
应用激光
2022, 42(6): 20
作者单位
摘要
武汉理工大学硅酸盐建筑材料国家重点实验室, 武汉 430070
制备磷建筑石膏制品是磷石膏资源化利用的一条重要途径, 而合适的改性技术是保证建筑石膏制品能够工业化生产的关键。分别利用3种减水剂、3种缓凝剂、2种黏结剂、2种保水剂对磷建筑石膏进行改性, 探讨外加剂品种对磷建筑石膏的适应性, 研究外加剂掺量对磷建筑石膏的性能影响规律, 并采用扫描电镜对优选出的外加剂的改性机理进行分析。结果表明: 聚羧酸减水剂(PC)、醋酸乙烯酯-乙烯共聚物可再分散乳胶粉黏结剂(VAE)、羟丙基甲基纤维素保水剂(HPMC)和骨胶缓凝剂(BG)对磷建筑石膏具有较好的适应性, 可分别用于改善磷建筑石膏的绝干强度、黏结强度、保水性能及延长其凝结时间; PC和VAE能改善磷建筑石膏硬化体内部晶体结构的致密性, 而BG、HPMC则使磷建筑石膏硬化体结构更加疏松。
磷建筑石膏 改性 减水剂 缓凝剂 黏结剂 保水剂 机理 phosphorus building gypsum modification water reducer retarder binder water retaining agent mechanism 
硅酸盐通报
2022, 41(7): 2400
作者单位
摘要
1 1.上海电力大学 环境与化学工程学院, 上海200090
2 2.上海交通大学 化学化工学院, 上海200240
3 3.郑州大学 化学系, 郑州 450001
硫化聚丙烯腈(S@pPAN)作为锂硫电池正极材料实现了固-固转化反应机制, 没有多硫离子溶解现象, 但电化学循环过程中出现明显的体积变化, 其表界面特性对电化学性能具有重要影响。本研究以单壁碳纳米管(SWCNT)与羧甲基纤维素钠(CMC)复配作为S@pPAN正极黏结剂, 调控S@pPAN表界面并缓解充放电过程中的体积变化。在2C(1C=1672 mA∙g-1)电流密度下, 电池循环140圈后容量保持率为84.7%, 在7C的大电流密度下仍能维持 1147 mAh∙g-1的高比容量。加入SWCNT后复配黏结剂薄膜的极限拉伸强度提升了41倍, 并且复配黏结剂能在循环中维持更加稳定的正极界面, 有效提升了锂硫电池的循环稳定性。
锂硫电池 S@pPAN正极 羧甲基纤维素钠 黏结剂 界面稳定 lithium-sulfur battery S@pPAN cathode sodium carboxymethyl cellulose binder stable interface 
无机材料学报
2021, 37(2): 182

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!