强激光与粒子束, 2014, 26 (8): 084003, 网络出版: 2014-07-30  

γ辐照前后多栅NMOS转移特性曲线交叉现象机理分析

Mechanism of crossover of transconductance curves in 0.5 μm multi-finger NMOS FETs before and after γ irradiation
潘立丁 1,2,3,*石瑞英 1,2,3龚敏 1,2,3刘杰 1,2,3
作者单位
1 四川大学 物理科学与技术学院 微电子学系, 成都 610064
2 四川大学 辐射物理及技术教育部重点实验室, 成都 610064
3 四川大学 物理科学与技术学院, 微电子技术四川省重点实验室, 成都 610064
摘要
在研究0.5 μm多栅NMOS场效应管γ辐照总剂量效应实验时, 发现部分多栅NMOS器件辐照前后的转移特性曲线出现交叉现象, 相关的解释鲜见报道。经过分析提出假设: 部分多栅NMOS在γ辐照实验过程中各栅极受到剂量不均匀的辐照, 导致辐照前后转移特性曲线出现交叉现象。计算机仿真结果表明: 受到剂量不均匀的辐照后, 多栅NMOS各栅极氧化层陷阱电荷和硅-二氧化硅界面电荷浓度不一致, 使各栅极阈值电压不同步漂移, 导致器件跨导退化和转移特性曲线交叉。通过仿真验证能够说明, 所提出的假设合理地解释了实验中的现象。
Abstract
The crossover phenomenon of transconductance curves was found in part of 0.5 μm multi-finger NMOS FETs after γ irradiation experiments. To give a reasonable explanation, we assumed that the radiation effects on each gate of this part of multi-finger NMOS FETs are non-uniform, and the corresponding computer simulations were performed. The simulation results indicate that after non-uniform irradiation, the difference of oxide trapped charges and interface charges of each gate in multi-finger NMOS FETs will make threshold voltage shift asynchronously, leading to the degeneration of transconductance and the crossover of transconductance curves.
参考文献

[1] Schwank J R, Shaneyfelt M R, Fleetwood D M. Radiation effects in MOS oxides[J]. Nuclear Science, 2008, 55(4): 1425-1430.

[2] Hong Genshen, Xiao Zhiqiang, Gao Xiangdong, et al. Total dose radiation characteristics of SOI MOSFET[J]. Electronics & Packaging, 2009, 9(2): 32-34.

[3] 丁李利, 郭红霞, 王忠明, 等. CMOS电路总剂量效应最劣偏置甄别[J]. 强激光与粒子束, 2012, 24(11): 2757-2762. (Ding Lili, Guo Hongxia, Wang Zhongming, et al. Identification of worst-case bias condition for total ionizing dose effect of CMOS circuits. High Power Laser and Particle Beams, 2012, 24(11): 2757-2762)

[4] Wang Jing, Wang Wenhua, Huang Ru, et al. Deteriorated radiation effects impact on the characteristics of MOS transistors with multi-finger configuration[J]. Microelectronics Reliability, 2010, 50(1): 1094-1097.

[5] Li Dongmei, Huangfu Liying, Gou Qiujing, et al. Total ionizing dose radiation effects on MOS transistors with different layouts[J]. Chinese Journal of Semiconductors, 2007, 28(2): 171-175.

[6] De Lima J A, Silveira M A G, Cirne K H, et al. X-ray radiation effects in overlapping circular-gate MOSFET’s[C]//Proc of RADECS. 2011: 88-91.

[7] Siu S L, Tam W S, Wong H, et al. Influence of multi-finger layout on the subthreshold behavior of nanometer MOS transistors[J]. Microelectronics Reliability, 2012, 52(8): 1606-1609.

[8] Liu Shiyao, He Wei, Cao Jianmin, et al. The total ionizing dose effects of non-planar triple-gate transistors[J]. Journal of Semiconductors, 2013, 34: 094004.

[9] 韦源, 谢红刚, 贡顶, 等. 金属氧化物半导体场效应管长期辐射效应的数值模拟[J]. 强激光与粒子束, 2013, 25(4): 1031-1034. (Wei Yuan, Xie Honggang, Gong Ding, et al. Numerical simulation of long-term radiation effects for MOSFETs. High Power Laser and Particle Beams, 2013, 25(4): 1031-1034)

[10] 耿长冉, 汤晓斌, 谢芹, 等. 空间辐射环境及人体剂量蒙特卡罗模拟[J]. 强激光与粒子束, 2012, 24(12): 3028-3032. (Geng Changran, Tang Xiaobin, Xie Qin, et al. Space radiation environment and human dose calculation based on Monte Carlo method. High Power Laser and Particle Beams, 2012, 24(12): 3028-3032)

[11] Rougieux F E, Macdonald D, Cuevas A, et al. Electron and hole mobility reduction and Hall factor in phosphorus-compensated p-type silicon[J]. Journal of Applied Physics, 2010, 108: 013706.

[12] Chen Duan, Wei Guowei. Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices[J]. Journal of Computational Physics, 2010, 229(12): 4431-4460.

[13] Alessandrini M, Esseni D, Fiegna C. Development of an analytical mobility model for the simulation of ultra-thin single- and double-gate SOI MOSFETs[J]. Solid-State Electronics, 2004, 48(4): 589-595.

[14] Michael S. A novel technique for modeling radiation effects in solar cells utilizing SILVACO virtual wafer fabrication software[C]//Proc of RADECS. 2005.

[15] Liu Shiyao, He Wei, Cao Jianmin, et al. Total ionizing dose effects on triple-gate FETs[C]//Proc of ICSICT. 2012: 1-3.

[16] Garcia-Moreno E, Picos R, Isern E, et al. CMOS current source based radiation sensors[C]//Proc of ICSICT. 2010: 1380-1383.

[17] Barnaby H J, Mclain M L, Esqueda I S, et al. Modeling ionizing radiation effects in solid state materials and CMOS devices[J]. Transactions on Circuits and Systems, 2009, 56(8): 1870-1883.

[18] Ohyama H, Hayama K, Takakura K, et al. effect of irradiation temperature on radiation damage in electron-irradiated MOS FETs[J]. Microelectronic Engineering, 2003, 66(1): 530-535.

潘立丁, 石瑞英, 龚敏, 刘杰. γ辐照前后多栅NMOS转移特性曲线交叉现象机理分析[J]. 强激光与粒子束, 2014, 26(8): 084003. Pan Liding, Shi Ruiying, Gong Min, Liu Jie. Mechanism of crossover of transconductance curves in 0.5 μm multi-finger NMOS FETs before and after γ irradiation[J]. High Power Laser and Particle Beams, 2014, 26(8): 084003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!