光学学报, 2012, 32 (5): 0516003, 网络出版: 2012-04-13   

Al掺杂浓度对CrSi2电子结构及光学性质的影响 下载: 527次

Effect of Al Doping Concentration on Electronic and Optical Properties of CrSi2
作者单位
1 安顺学院物理与电子科学系, 贵州 安顺 561000
2 贵州大学理学院新型光电子材料与技术研究所, 贵州 贵阳 550025
摘要
采用基于第一性原理的赝势平面波方法,对不同Al掺杂浓度CrSi2的几何结构、能带结构、态密度和光学性质进行了计算和比较。几何结构和电子结构的计算表明:Al掺杂使得CrSi2的晶格常数a和b增大,c变化不大,晶格体积增大;Cr(Si1-xAlx)2仍然是间接带隙半导体,掺杂使得费米面向价带移动,且随着掺杂量的增大而更深地嵌入价带中,费米能级附近的电子态密度主要由Cr的3d态电子贡献。光学性质计算表明,随着掺杂量的增大,Cr(Si1-xAlx)2的静态介电常数、第一介电峰、折射率n0逐渐增大,平均反射效应减弱,表明Al掺杂有效增强了CrSi2对光的吸收,能够提高其光电转换效率。计算结果为CrSi2光电材料的应用和设计提供了理论指导。
Abstract
By using pseudo-potential plane-wave method of the first principle based on the density function theory, geometrical structure, electronic structure and optical properties of Al-doped CrSi2 are calculated and analyzed. The calculated results on geometrical structure and electronic structure show that the lattice constant a and b increase while c has little change, the volume of lattice expands, the band structure is still indirect and the Fermi energy moves into the valence band deeper and deeper with Al increase from 0 to 0.3333, the density of electronic states near the Fermi energy level is mainly composed of Cr-3d. Optical properties calculation indicates that after doping Al, static dielectric constant, the first peak of ε2(ω) and refractive index n0 increase, the average reflective effect decreases, the light absorption of CrSi2 effectively enhances, and then improves the photoelectric conversion efficiency after doping Al. These results offer theoretical guide for design and application of optoelectronic material of CrSi2.
参考文献

[1] S. P. Murarka. Silicides for VLSI Applications [M]. New York: Academic Press, 1983. 172~175

[2] M. C. Bost, J. E. Mahan. Summary Abstract: Semiconducting silicides as potential materials for electro-optic very large scale integrated circuit Interconnect [J]. J. Vac. Sci. Technol. B, 1986, 4(6): 1336~1338

[3] V. E. Borisenko. Semiconducting Silicides [M]. Berlin: Springer-Verlag New York, LLC, 2000

[4] N. G. Galkin, T. A. Velichko, S. V. Skripka et al.. Semiconducting and structural properties of CrSi2 A-type epitaxial films on Si (111) [J]. Thin Solid Films, 1996, 280(1-2): 211~220

[5] D. B. Migas, L. Miglio. Band-gap modifications of β-FeSi2 with lattice distortions corresponding to the epitaxial relationships on Si(111) [J]. Phys. Rev. B, 2000, 62(16): 11063~11070

[6] E. N. Nikitin. Thermoelectric properties of the silicon-chromium system [J]. Sov. Phys.-Solid State, 1961, 2(11): 2389~2392

[7] D. Shinoda, S. Asanabe, Y. Sasaki. Semiconducting properties of chromium disilicide [J]. J. Phys. Soc. Jpn., 1964, 19(3): 269~272

[8] T. Tokushima, I. Nishida, K. Sakata et al.. The CrSi2-CoSi thermomodule and its applications[J]. J. Mater. Sci., 1969, 4(11): 978~984

[9] I. Nishida. The crystal growth and thermoelectric properties of chromium disilicide[J]. J. Mater. Sci., 1972, 7(10): 1119~1124

[10] I. Nishida, T. Sakata. Semiconducting properties of pure and Mn-doped chromium disilicides [J]. J. Phys. Chem. Solids, 1978, 39(5): 499~505

[11] H. Hohl, A. P. Ramirez, T. T. M. Palstra et al.. Thermoelectric and magnetic properties of Cr1-xVxSi2 solid solutions[J]. J. Alloys Comp., 1997, 248: 70~76

[12] L. F. Mattheiss. Structural effect s on t he calculated semiconductor gap of CrSi2 [J]. Phy. Rev. B, 1991, 43(2): 1863~1866

[13] D. Decker, E. Loos, Chr. Drobniewski et al.. Structure and properties of CrSi2/Si multilayers[J]. Microelectron. Engng., 2004, 76(1-4): 331~335

[14] S. Y. Zhou, Q. Xie, W. J. Yan et al.. First-principles study on the electronic structure and optical properties of CrSi2 [J]. Sci .China Ser G-Phys. Mech. Astron., 2009, 52(1): 46~51

[15] S. Y. Zhou, Q. Xie, W. J. Yan et al.. First-principles study on the electronic structure of stressed CrSi2 [J]. Sci. China Ser. G-Phys. Mech. Astron., 2009, 52(1): 76~81

[16] Z. J. Pan, L. T. Zhang, J. S. Wu. Effect s of Al doping on the transport performances of CrSi2 single crystals[J]. Scripta Mater., 2007, 56(3): 245~248

[17] Z. J. Pan, L. T. Zhang, J. S. Wu. Effect s of V-doping on the transport performances of CrSi2 single crystals[J]. Scripta Mater., 2007, 56(4): 257~260

[18] 周士芸, 谢泉, 闫万珺 等. 锰掺杂二硅化铬电子结构和光学性质的第一性原理计算[J]. 光学学报, 2009, 29(10): 2848~2853

    Zhou Shiyun, Xie Quan, Yan Wanjun et al.. First-principles calculation of electronic structure and optical properties of CrSi2 with doping Mn[J]. Acta Optica Sinica, 2009, 29(10): 2848~2853

[19] 周士芸, 谢泉, 闫万珺 等. V掺杂CrSi2能带结构的第1性原理计算[J]. 云南大学学报(自然科学版), 2009, 31(5): 484~488

    Zhou Shiyun, Xie Quan, Yan Wanjun et al.. First-principles calculation of the band structure of V-doped CrSi2 [J]. J. Yunnan University, 2009, 31(5): 484~488

[20] 张富春, 邓周虎, 阎军锋 等. ZnO电子结构与光学性质的第一性原理计算[J]. 光学学报, 2006, 26(8): 1203~1209

    Zhang Fuchun, Deng Zhouhu, Yan Junfeng et al.. First-principles calculation of electronic structure and optical properties of ZnO[J]. Acta Optica Sinica, 2006, 26(8): 1203~1209

[21] 张富春, 张志勇, 张威虎 等. AZO(ZnOAl)电子结构与光学性质的第一性原理计算[J]. 光学学报, 2009, 29(4): 1025~1031

    Zhang Fuchun, Zhang Zhiyong, Zhang Weihu et al.. First-principles calculation of electronic structure and optical properties of AZO(ZnOAl)[J]. Acta Optica Sinica, 2009, 29(4): 1025~1031

[22] 向东, 刘波, 顾牡 等. YTaO4和LuTaO4电子结构和光学性质的理论计算[J]. 光学学报, 2009, 29(2): 448~453

    Xiang Dong, Liu Bo, Gu Mu et al.. Theoretical calculation of electronic structures and optical properties of YTaO4 and LuTaO4[J]. Acta Optica Sinica, 2009, 29(2): 448~453

[23] 闫万珺, 周士芸, 谢泉 等. Co掺杂β-FeSi2电子结构及光学性质的第一性原理研究[J]. 光学学报, 2011, 31(6): 0616003

    Yan Wanjun, Zhou Shiyun, Xie Quan et al.. First principles study of electronic structure and optical properties for co-doped β-FeSi2[J]. Acta Optica Sinica, 2011, 31(6): 0616003

[24] 陈茜, 谢泉, 杨创华 等. 掺杂Mg2Si电子结构及光学性质的第一性原理计算[J]. 光学学报, 2009, 29(1): 229~235

    Chen Qian, Xie Quan, Yang Chuanghua et al.. First-principles calculation of electronic structure and optical properties of Mg2Si with doping[J]. Acta Optica Sinica, 2009, 29(1): 229~235

[25] 蔡建秋, 陶向明, 罗海军 等. Sr2RuO4各向异性光学性质的第一性原理研究[J]. 光学学报, 2010, 30(12): 222~227

    Cai Jianqiu, Tao Xiangming, Luo Haijun et al.. Ab-initio investigation of anisotropic optical properties of Sr2RuO4[J]. Acta Optica Sinica, 2010, 30(12): 222~227

[26] 李春霞, 党随虎, 韩培德. 空位缺陷对CdS电子结构和光学性质的影响[J]. 光学学报, 2010, 30(5): 198~204

    Li Chunxia, Dang Suihu, Han Peide. Vacancies effects on electronic structure and optical properties of CdS[J]. Acta Optica Sinica, 2010, 30(5): 198~204

[27] 李春霞, 党随虎, 张可言 等. 压力效应对CdS电子结构和光学性质的影响[J]. 光学学报, 2011, 31(6): 0616004

    Li Chunxia, Dang Suihu, Zhang Keyan et al.. Influence of pressure effect on CdS electronic structure and optical properties[J]. Acta Optica Sinica, 2011, 31(6): 0616004

[28] M. D. Segall, J. D. Lindan Philip, M. J. Probert et al.. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys. Cond. Matt., 2002, 14(11): 2717~2744

[29] C. G. Broyden. The convergence of a class of double-rank minimization algorithms, the new algorithm[J]. J. Inst. for Math. & Appl., 1970, 6: 222~231

[30] R. Fletcher. A new approach to variable metric algorithms[J]. Comput. J., 1970, 13(3): 317~322

[31] D. Goldfarb. A family of variable metric methods derived by variational means[J]. Math. Comput., 1970, 24(109): 23~26

[32] D. F. Shanno. Conditioning of quasi-newton methods for function minimization[J]. Math. Comput., 1970, 24 (111): 647~656

[33] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865~3868

[34] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B, 1990, 41(11): 7892~7895

[35] H. J. Monkhorst, J. D. Pack. Special point s for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188~5192

[36] V. L. Shaposhnikov, A. V. Krivosheeva, A. E. Krivosheev et al.. Effect of stresses in electronic properties of chromium disilicide[J]. Micro-Electr Engng., 2002, 64(1-4): 219~223

[37] A. V. Krivosheeva, V. L. Shaposhnikov, V. E. Borisenko. Electronic structure of stressed CrSi2 [J]. Mater Sci. Engng. B, 2003, 101(1-3): 309~312

[38] M. C. Bost, J. E. Mahan. An investigation of the optical constants and band gap of chromium disilicide[J]. J. Appl. Phys., 1988, 63(3): 839~844

[39] V. Bellani, G. Guizzetti, F. Marabelli et al.. Theory and experiment on the optical properties of CrSi2 [J]. Phys. Rev. B, 1992, 46(15): 9380~9389

[40] 沈学础. 半导体光谱和光学性质[M]. 北京:科学出版社(第二版), 1992. 76~94

    Shen Xuechu. Semiconductor Spectra and Optical Properties [M]. Beijing: Science Press (The Second Edition), 1992. 76~94

[41] 方容川. 固体光谱学[M]. 合肥:中国科学技术出版社, 2001. 71~75

    Fang Rongchuan. Solid-State Spectroscopy [M]. Hefei: China Science and Technology Press, 2001. 71~75

闫万珺, 周士芸, 谢泉, 郭本华, 张春红, 张忠政. Al掺杂浓度对CrSi2电子结构及光学性质的影响[J]. 光学学报, 2012, 32(5): 0516003. Yan Wanjun, Zhou Shiyun, Xie Quan, Guo Benhua, Zhang Chunhong, Zhang Zhongzheng. Effect of Al Doping Concentration on Electronic and Optical Properties of CrSi2[J]. Acta Optica Sinica, 2012, 32(5): 0516003.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!