激光与光电子学进展, 2019, 56 (4): 040003, 网络出版: 2019-07-31   

砷化镓基近红外大功率半导体激光器的发展及应用 下载: 2785次

Development and Applications of GaAs-Based Near-Infrared High Power Semiconductor Lasers
作者单位
1 中国科学院半导体研究所光电子器件国家工程研究中心, 北京 100083
2 中国科学院大学材料科学与光电技术学院, 北京 100049
引用该论文

袁庆贺, 井红旗, 张秋月, 仲莉, 刘素平, 马骁宇. 砷化镓基近红外大功率半导体激光器的发展及应用[J]. 激光与光电子学进展, 2019, 56(4): 040003.

Qinghe Yuan, Hongqi Jing, Qiuyue Zhang, Li Zhong, Suping Liu, Xiaoyu Ma. Development and Applications of GaAs-Based Near-Infrared High Power Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040003.

参考文献

[1] 王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19.

    Wang L J, Ning Y Q, Qin L, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19.

[2] 德国推出了光学研究未来10年计划[J]. 中国科技信息, 2011( 6): 5.

    Optical research project for the next 10 years launched by Germany[J]. China Science and Technology Information, 2011( 6): 5.

[3] . 紧追美国, [J]. 英国国防部启动高能光纤激光武器研制 中国光学, 2014(7): 878.

    Follow the United States: UK Ministry of Defence launches high-energy fiber laser weapon development[J]. Chinese Optics, 2017( 7): 878.

[4] 陈亮. 深圳市大族激光营销发展战略研究[D]. 北京: 中国人民大学, 2008: 1- 4.

    ChenL. Research on development strategy of Dazu laser marketing in Shenzhen[D]. Beijing: Renmin University of China, 2008: 1- 4.

[5] 张建. GaAs基近红外半导体激光器的设计、生长和制备研究[D]. 长春:中国科学院研究生院(长春光学精密机械与物理研究所), 2013: 10- 18.

    ZhangJ. Research on the design, growth and preparation of GaAs-based near-infrared semiconductor lasers[D]. Changchun: Graduate University of Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechanics and Physics), 2013: 10- 18.

[6] BachmannF, LoosenP, PopraweR. High power diode lasers[M]. New York: Springer, 2007.

[7] Pflug GC, InjeyanH, Vespucci MT. High power laser handbook[M]. New York: McGraw-Hill, 2011.

[8] 刘启坤, 孔金霞, 朱凌妮, 等. 电致发光用于大功率半导体激光器失效模式分析[J]. 发光学报, 2018, 39(2): 180-187.

    Liu Q K, Kong J X, Zhu L N, et al. Failure mode analysis of high-power laser diodes by electroluminescence[J]. Chinese Journal of Luminescence, 2018, 39(2): 180-187.

[9] Borruel L, Odriozola H. Tijero J M G, et al. Design strategies to increase the brightness of gain guided tapered lasers[J]. Optical and Quantum Electronics, 2008, 40(2/3/4): 175-189.

[10] Bachmann F G. High-power diode laser technology and applications[J]. Proceedings of SPIE, 2000, 3888: 394-404.

[11] Chilla J L A, Butterworth S D, Zeitschel A, et al. . High-power optically pumped semiconductor lasers[J]. Proceedings of SPIE, 2004, 5332: 143-151.

[12] Gapontsev V, Moshegov N, Trubenko P, et al. High-brightness fiber coupled pumps[J]. Proceedings of SPIE, 2009, 7198: 71980O.

[13] Kaifuchi Y, Yamagata Y, Nogawa R, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[J]. Proceedings of SPIE, 2017, 10086: 100860D.

[14] Taniguchi H, Ishii H, Minato R, et al. 25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(5): 1176-1179.

[15] CrumpP, RoderC, StaskeR, et al. Limitations to peak continuous wave power in high power broad area single emitter 980 nm diode lasers[C]∥European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, June 14-19, 2009, Munich. New York: IEEE, 2009: 1.

[16] Morita T, Nagakura T, Torii K, et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1502104.

[17] Chen G, Xie L, Wang Y B, et al. Photodarkening-induced absorption and fluorescence changes in Yb fibers[J]. Chinese Physics Letters, 2013, 30(10): 104208.

[18] Chen Z G, Bai J, Dong W M, et al. High power and high efficiency kW 88x-nm multi-junction pulsed diode laser bars and arrays[J]. Proceedings of SPIE, 2014, 8965: 896514.

[19] Hooper L E, Kalita M, Devine A, et al. White light 50 W supercontinuum: roadmap to kW truly white lasers[J]. Proceedings of SPIE, 2015, 9344: 93440X.

[20] Demir A, Peters M, Duesterberg R, et al. 29.5 W continuous wave output from 100 μm wide laser diode[J]. Proceedings of SPIE, 2015, 9348: 93480G.

[21] Morales J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars and single emitters[J]. Proceedings of SPIE, 2016, 9733: 97330T.

[22] Xiao X S, Guo H T, Yan Z J, et al. Ultra-short wavelength operation in Thulium-doped silica fiber laser with bidirectional pumping[J]. Proceedings of SPIE, 2017, 10256: 102561F.

[23] Chen Z G, Bao L, Bai J, et al. Performance limitation and mitigation of longitudinal spatial hole burning in high-power diode lasers[J]. Proceedings of SPIE, 2012, 8277: 82771J.

[24] Zeghuzi A, Radziunas M, Wünsche H J, et al. Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers[J]. Optical and Quantum Electronics, 2018, 50(2): 88.

[25] Pietrzak A, Hülsewede R, Zorn M, et al. High-power single emitters and low fill factor bars emitting at 808 nm[J]. Proceedings of SPIE, 2016, 9733: 97330R.

[26] Nlight High-power diode lasers offer efficient answer[EB/OL]. ( 2005-09-15)[2018-06-15]. http:∥www.nlight.net/nlight-files/file/articles/HP_May05_OLE.pdf.

[27] Pietrzak A, Huelsewede R, Zorn M, et al. New highly efficient laser bars and laser arrays for 8xx-10xx nm pumping applications[J]. Proceedings of SPIE, 2014, 8965: 89650T.

[28] FrevertC, CrumpP, BuggeF, et al. Low-temperature optimized 940 nm diode laser bars with 1.98 kW peak power at 203 K[C]∥2015 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2015, San Jose. New York: IEEE.2015: SM3F. 8.

[29] Wang Z F, Li T, Yang G W, et al. High power, high efficiency continuous-wave 808 nm laser diode arrays[J]. Optics & Laser Technology, 2017, 97: 297-301.

[30] Strauss U, Müller M, Swietlik T, et al. Next generation 8xx nm laser bars and single emitters[J]. Proceedings of SPIE, 2011, 7918: 79180T.

[31] Pietrzak A, Woelz M, Huelsewede R, et al. Heading to 1 kW levels with laser bars of high-efficiency and emission wavelength around 880 nm and 940 nm[J]. Proceedings of SPIE, 2015, 9348: 93480E.

[32] Zorn M, Huelsewede R, Pietrzak A, et al. Progress in reliable single emitters and laser bars for efficient CW-operation in the near-infrared emission range[J]. Proceedings of SPIE, 2015, 9348: 93480K.

[33] Frevert C, Bugge F, Knigge S, et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K: Analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K[J]. Proceedings of SPIE, 2016, 9733: 97330L.

[34] Ladugin A, Marmalyuk A, Padalitsa A, et al. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%[J]. Quantum Electronics, 2017, 47(4): 291-293.

[35] Karow M M, Frevert C, Platz R, et al. Efficient 600-W-laser bars for long-pulse pump applications at 940 and 975 nm[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1683-1686.

[36] Pietrzak A, Zorn M, Meusel J, et al. Development of highly efficient laser bars emitting at around 1060 nm for medical applications[J]. Proceedings of SPIE, 2018, 10514: 105140D.

[37] 周旻超, 江先锋, 张丽芳, 等. 大功率半导体激光器叠阵的光学性能[J]. 中国激光, 2013, 40(12): 1202004.

    Zhou M C, Jiang X F, Zhang L F, et al. Optical performance of high power laser diode stack[J]. Chinese Journal of Lasers, 2013, 40(12): 1202004.

[38] 周崇喜, 刘银辉, 谢伟民, 等. 大功率半导体激光器阵列光束光纤耦合研究[J]. 中国激光, 2004, 31(11): 1296-1300.

    Zhou C X, Liu Y H, Xie W M, et al. Analysis and design of fiber coupled high power laser diode array[J]. Chinese Journal of Lasers, 2004, 31(11): 1296-1300.

[39] Kanskar M, Cai J, Galstad C, et al. High power conversion efficiency and wavelength-stabilized narrow bandwidth 975 nm diode laser pumps[J]. Proceedings of SPIE, 2006, 6216: 621609.

[40] Peters M, Rossin V, Everett M, et al. High-power high-efficiency laser diodes at JDSU[J]. Proceedings of SPIE, 2007, 6456: 64560G.

[41] Piprek J. Inverse thermal lens effects on the far-field blooming of broad area laser diodes[J]. IEEE Photonics Technology Letters, 2013, 25(10): 958-960.

[42] Winterfeldt M, Crump P, Wenzel H, et al. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers[J]. Journal of Applied Physics, 2014, 116(6): 063103.

[43] Winterfeldt M, Crump P, Knigge S, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1809-1812.

[44] Eckstein HC, StumpfM, Zeitner UD, et al. Mode shaping for enhanced brightness in broad area lasers using monolithically integrated microoptical structures[C]∥International Semiconductor Laser Conference, September 7-10, 2014, Palma de Mallorca. New York: IEEE, 2014: 17- 18.

[45] DeckerJ, WinterfeldtM, FrickeJ, et al. Study of lateral brightness in 20 μm to 50 μm wide narrow stripe broad area lasers[C]∥IEEE High Power Diode Lasers and Systems Conference, March 24, 2015, Coventry. New York: IEEE.2015: 21- 22.

[46] Kanskar M, Bao L, Chen Z, et al. Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam[J]. Proceedings of SPIE, 2017, 10086: 1008609.

[47] 杨晔, 刘云, 张金龙, 等. 850 nm高亮度近衍射极限锥形半导体激光器[J]. 发光学报, 2011, 32(10): 1064-1068.

    Yang Y, Liu Y, Zhang J L, et al. Near diffraction limit high-brightness 850 nm tapered laser diodes[J]. Chinese Journal of Luminescence, 2011, 32(10): 1064-1068.

[48] 李景, 邱运涛, 曹银花, 等. 高亮度锥形半导体激光器[J]. 发光学报, 2016, 37(8): 990-995.

    Li J, Qiu Y T, Cao Y H, et al. High brightness tapered diode laser[J]. Chinese Journal of Luminescence, 2016, 37(8): 990-995.

[49] Dittmar F, Sumpf B, Fricke J, et al. High-power 808-nm tapered diode lasers with nearly diffraction-limited beam quality of M2=1.9 at P=4.4 W [J]. IEEE Photonics Technology Letters, 2006, 18(4): 601-603.

[50] Fiebig C, Blume G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255.

[51] Wang X Z, Erbert G, Wenzel H, et al. 17-W near-diffraction-limited 970-nm output from a tapered semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(2): 115-118.

[52] Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm[J]. Applied Physics B, 2016, 122(4): 87.

[53] Müller A, Zink C, Fricke J, et al. 1030 nm DBR tapered diode laser with up to 16 W of optical output power[J]. Proceedings of SPIE, 2017, 10123: 101231B.

[54] Huang R K, Donnelly J P, Missaggia L J, et al. High-brightness slab-coupled optical waveguide laser[J]. Proceedings of SPIE, 2007, 6485: 64850F.

[55] Ma X L, Qu H W, Zhao S Y, et al. Improved power and efficiency for tapered lasers with optimized photonic crystal structures[J]. Proceedings of SPIE, 2017, 10457: 104571O.

[56] Zhao S Y, Qi A Y, Wang M J, et al. High-power high-brightness 980 nm lasers with >50% wall-plug efficiency based on asymmetric super large optical cavity[J]. Optics Express, 2018, 26(3): 3518-3526.

[57] 王立军, 彭航宇, 张俊. 大功率半导体激光合束进展[J]. 中国光学, 2015, 8(4): 517-534.

    Wang L J, Peng H Y, Zhang J. Advance on high power diode laser coupling[J]. Chinese Optics, 2015, 8(4): 517-534.

[58] 张俊, 陈泳屹, 秦莉, 等. 高功率、高光束质量半导体激光器研究进展[J]. 科学通报, 2017, 62(32): 3719-3728.

    Zhang J, Chen Y Y, Qin L, et al. Advances in high power high beam quality diode lasers[J]. Chinese Science Bulletin, 2017, 62(32): 3719-3728.

[59] Xu D, Guo Z J, Zhang T J, et al. 600 W high brightness diode laser pumping source[J]. Proceedings of SPIE, 2017, 10086: 1008603.

[60] Heinemann S, Fritsche H, Kruschke B, et al. Compact high brightness diode laser emitting 500 W from a 100 μm fiber[J]. Proceedings of SPIE, 2013, 8605: 86050Q.

[61] Fritsche H, Kruschke B, Koch R, et al. High brightness direct diode laser with kW output power[J]. Proceedings of SPIE, 2014, 8965: 89650G.

[62] Ferrario F, Fritsche H, Grohe A, et al. Building block diode laser concept for high brightness laser output in the kW range and its applications[J]. Proceedings of SPIE, 2016, 9733: 97330G.

[63] Decker J, Crump P, Fricke J, et al. 25-W monolithic spectrally stabilized 975-nm minibars for dense spectral beam combining[J]. IEEE Photonics Technology Letters, 2015, 27(15): 1675-1678.

[64] LauerC, BachmannA, FuritschM, et al. Extra bright high power laser bars[C]∥IEEE High Power Diode Lasers and Systems Conference, October 14-15, Coventry. New York: IEEE.2015: 37- 38.

[65] Bachmann A, Lauer C, Furitsch M, et al. Recent brightness improvements of 976 nm high power laser bars[J]. Proceedings of SPIE, 2017, 10086: 1008602.

[66] KanskarM, KeeneyS, Martinsen R. The power of brilliance: a brief history of high-power semiconductor lasers[EB/OL]. ( 2017-12-19) [2018-07-12]. http:∥nlight.net/nlight-files/file/The%20Power%20of%20Brilliance%20-%20The%20History%20of%20High-Power%20Semiconductor%20Lasers%20171219.pdf.

[67] Lorenzen D, Schröder M, Meusel J, et al. Comparative performance studies of indium and gold-tin packaged diode laser bars[J]. Proceedings of SPIE, 2006, 6104: 610404.

[68] 杨红伟, 黄科, 陈宏泰, 等. 高效率大功率连续半导体激光器[J]. 微纳电子技术, 2010, 47(2): 71-75.

    Yang H W, Huang K, Chen H T, et al. High efficiency and high power CW semiconductor lasers[J]. Micronanoelectronic Technology, 2010, 47(2): 71-75.

[69] Rossin V, Zucker E, Peters M, et al. High-power high-efficiency 910- to 980-nm broad-area laser diodes[J]. Proceedings of SPIE, 2004, 5336: 196-203.

[70] Erbert G, Bugge F, Knigge A, et al. Highly reliable 75 W InGaAs/AlGaAs laser bars with over 70% conversion efficiency[J]. Proceedings of SPIE, 2006, 6133: 61330B.

[71] Crump P, Wang J, Patterson S, et al. Diode laser efficiency increases enable >400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW[J]. Proceedings of SPIE, 2006, 6104: 610409.

[72] CrumpP, GrimshawM, WangJ, et al. 85% power conversion efficiency 975-nm broad area diode lasers at -50 ℃, 76% at 10 ℃[C]∥Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, May 21-26, 2006, Long Beach. New York: IEEE.2006: 1- 2.

[73] Bai J G, Chen Z G, Leisher P, et al. High-efficiency kW-class QCW 88x-nm diode semiconductor laser bars with passive cooling[J]. Proceedings of SPIE, 2012, 8241: 82410W.

[74] Hodges A, Wang J, Defranza M, et al. A CTE matched, hard solder, passively cooled laser diode package combined with nXLT facet passivation enables high power, high reliability operation[J]. Proceedings of SPIE, 2007, 6552: 65521E.

[75] Bao L, Wang J, Devito M, et al. Reliability of high performance 9xx-nm single emitter laser diodes[J]. Proceedings of SPIE, 2010, 7583: 758302.

[76] Bao L, Leisher P, Wang J, et al. High reliability and high performance of 9xx-nm single emitter laser diodes[J]. Proceedings of SPIE, 2011, 7918: 791806.

[77] Bao L, Bai J, Price K, et al. Reliability of high power/brightness diode lasers emitting from 790 to 980 nm[J]. Proceedings of SPIE, 2013, 8605: 86050N.

[78] Kanskar M, Bao L, Bai J, et al. High reliability of high power and high brightness diode lasers[J]. Proceedings of SPIE, 2014, 8965: 896508.

[79] YamagataY, YamadaY, KaifuchiY, et al. Performance and reliability of high power, high brightness 8xx-9xx nm semiconductor laser diodes[C]∥2015 IEEE High Power Diode Lasers and Systems Conference, October 14-15, 2015, Coventry. New York: IEEE.2015: 7- 8.

[80] Li X N, Wang J W, Feng F F, et al. Effects of packaging on the performances of high brightness 9xx nm CW mini-bar diode lasers[J]. Proceedings of SPIE, 2015, 9346: 93460C.

[81] Zorn M, Hülsewede R, Schulze H, et al. JENOPTIK diode lasers and bars optimized for high-power applications in the NIR range[J]. Proceedings of SPIE, 2010, 7583: 75830U.

[82] Hemenway M, Bao L, Kanskar M, et al. Performance improvements to wavelength stabilized high power 885 nm diode laser modules[J]. Proceedings of SPIE, 2016, 9730: 97300K.

[83] Strohmaier S G, Erbert G, Rataj T, et al. Forward development of kW-class power diode laser bars[J]. Proceedings of SPIE, 2018, 10514: 1051409.

[84] Liu G L, Li J W, Fan L, et al. High power single lateral mode 1050 nm laser diode bar[J]. Proceedings of SPIE, 2017, 10086: 100860Y.

[85] Yamagata Y, Yamada Y, Muto M, et al. 915nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)[J]. Proceedings of SPIE, 2015, 9348: 93480F.

[86] Naito H, Nagakura T, Torii K, et al. Long-term reliability of 915-nm broad-area laser diodes under 20-W CW operation[J]. IEEE Photonics Technology Letters, 2015, 27(15): 1660-1662.

[87] Andreeva E V. Il'Chenko S N, Kurnyavko Y V, et al. Highly reliable high-power superluminescent diodes with three single-mode active channels[J]. Quantum Electronics, 2016, 46(7): 594-596.

[88] Kuramoto K, Abe S, Miyashita M, et al. Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric[J]. Proceedings of SPIE, 2018, 10514: 1051404.

[89] Fritsche H, Ferrario F, Koch R, et al. Direct diode lasers and their advantages for materials processing and other applications[J]. Proceedings of SPIE, 2015, 9356: 93560I.

[90] Deichsel E. Highly-reliable laser diodes and modules for spaceborne applications[J]. Proceedings of SPIE, 2017, 10565: 105650O.

[91] Heinemann S. McDougall S D, Ryu G, et al. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars[J]. Proceedings of SPIE, 2018, 10514: 105140Y.

[92] 马骁宇, 王俊, 刘素平. 国内大功率半导体激光器研究及应用现状[J]. 红外与激光工程, 2008, 37(2): 189-194.

    Ma X Y, Wang J, Liu S P. Present situation of investigations and applications in high power semiconductor lasers[J]. Infrared and Laser Engineering, 2008, 37(2): 189-194.

[93] 王路威. 半导体激光器的发展及其应用[J]. 成都大学学报(自然科学版), 2003, 22(3): 34-38.

    Wang L W. Development of semiconductor lasers and their applications[J]. Journal of Chengdu University(Natural Science), 2003, 22(3): 34-38.

[94] 雷正龙, 田泽, 陈彦宾. 工业领域的激光清洗技术[J]. 激光与光电子学进展, 2018, 55(3): 030005.

    Lei Z L, Tian Z, Chen Y B. Laser cleaning technology in industrial fields[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030005.

[95] 任国光, 伊炜伟, 齐予, 等. 美国战区和战略无人机载激光武器[J]. 激光与光电子学进展, 2017, 54(10): 100002.

    Ren G G, Yi W W, Qi Y, et al. U.S. theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100002.

[96] 程勇, 郭延龙, 唐璜, 等. 战术激光武器的发展动向[J]. 激光与光电子学进展, 2016, 53(11): 110004.

    Cheng Y, Guo Y L, Tang H, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110004.

袁庆贺, 井红旗, 张秋月, 仲莉, 刘素平, 马骁宇. 砷化镓基近红外大功率半导体激光器的发展及应用[J]. 激光与光电子学进展, 2019, 56(4): 040003. Qinghe Yuan, Hongqi Jing, Qiuyue Zhang, Li Zhong, Suping Liu, Xiaoyu Ma. Development and Applications of GaAs-Based Near-Infrared High Power Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040003.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!