半导体光电, 2018, 39 (6): 815, 网络出版: 2019-01-10   

磨料对硒化锌雾化施液化学机械抛光的影响

Effect of Abrasive on Ultrasound Fine Atomization CMP of Zinc Selenide
作者单位
江南大学 机械工程学院, 江苏 无锡 214122
摘要
采用雾化施液化学机械抛光(CMP)的方法, 以材料去除速率和表面粗糙度为评价指标, 选取最适合硒化锌抛光的磨料, 通过单因素实验对比CeO2、SiO2和Al2O3 三种磨料的抛光效果。结果显示:采用Al2O3抛光液可以获得最高的材料去除率, 为615.19nm/min, 而CeO2和SiO2磨料的材料去除率分别只有184.92和78.56nm/min。进一步分析磨料粒径对实验结果的影响规律, 表明100nm Al2O3抛光后的表面质量最佳, 粗糙度Ra仅为2.51nm, 300nm Al2O3的去除速率最大, 达到1256.5nm/min, 但表面存在严重缺陷, 出现明显划痕和蚀坑。在相同工况条件下, 与传统化学机械抛光相比, 精细雾化抛光的去除速率和表面粗糙度与传统抛光相近, 但所用抛光液量约为传统抛光的1/8, 大大提高了抛光液的利用率。
Abstract
Taking the material removal rate (MRR) and surface roughness (Ra) as the assessment indexes, the most suitable abrasive for polishing zinc selenide was selected with the method of ultrasonic atomization CMP. By single factor experiments on three abrasives of CeO2, SiO2 and Al2O3, it was found that Al2O3 abrasive obtained the highest removal rate of up to 615.19nm/min, while the removal rate of CeO2 and SiO2 abrasives were only 184.92 and 78.56nm/min, respectively. Furthermore, the influence of abrasive sizes on the experimental results was analyzed. It showed the surface quality after 100nm Al2O3 polishing was best (Ra=2.51nm), while the removal rate after 300nm Al2O3 polishing was the highest (MRR=1256.5nm/min), but the surface presented obvious scratches and pits. At the same conditions, the removal rate and surface roughness of fine atomization polishing were similar with those of traditional polishing, but the consumed quantity of polishing liquid is only 1/8, greatly improving the utilization rate of slurry.
参考文献

[1] 宫 华, 刘开平, 汪敏强, 等. ZnSe半导体发光材料的研究进展[J]. 中国陶瓷, 2003, 39(3): 15-17.

    Gong Hua, Liu Kaiping, Wang Minqiang, et al. Research progress of ZnSe semiconductor materials[J]. China Ceramics, 2003, 39(3): 15-17.

[2] 张玉兰, 卢利平, 臧春和, 等. 硒化锌晶体加工工艺研究[J]. 硅酸盐学报, 2004, 32(5): 612-615.

    Zhang Yulan, Lu Liping, Zang Chunhe, et al. Study processing technology of ZnSe crystal[J]. J. of the Chinese Ceramic Society, 2004, 32(5): 612-615.

[3] Lucca D A, Shao L. Subsurface damage in (100) ZnSe introduced by mechanical polishing[J]. Nuclear Instruments and Methods in Phys. Research B, 2006, 249: 907-910.

[4] Tomashyk V M, Kravtsova A S, Tomashyk Z F, et al. Optimization of conditions for treatment of ZnSe crystal surface by chemical etching[J]. Semiconductor Phys., 2013, 16(2): 140-145.

[5] 么艳平, 张玉兰, 李长江, 等. ZnSe多晶化学机械抛光研究[J]. 人工晶体学报, 2006, 35(6): 1378-1382.

    Yao Yanping, Zhang Yulan, Li Changjiang, et al. Study on the chemical mechanical polishing of ZnSe polycrystal[J]. J. of Synthetic Crystals, 2006, 35(6): 1378-1382.

[6] 吴传超, 安永泉, 王志斌, 等. 硒化锌的化学机械抛光研究[J]. 人工晶体学报, 2015, 44(1): 61-65.

    Wu Chuanchao, An Yongquan, Wang Zhibin, et al. Study on the chemical mechanical polishing of ZnSe[J]. J. of Synthetic Crystals, 2015, 44(1): 61-65.

[7] 武 鹏, 周建伟, 何彦刚, 等. 磨料粒径对多层Cu布线CMP的影响[J]. 微纳电子技术, 2015, 52(11): 733-736.

    Wu Peng, Zhou Jianwei, He Yangang, et al. Effect of the abrasive particle size on the multilayer Cu wire CMP[J]. Micronanoelectronic Technol., 2015, 52(11): 733-736.

[8] 熊 伟, 褚向峰. 不同磨料对蓝宝石晶片化学机械抛光的影响研究[J]. 人工晶体学报, 2013, 42(6): 1064-1069.

    Xiong Wei, Chu Xiangfeng. Effect of different abrasives on sapphire chemical-mechanical polishing[J]. J. of Synthetic Crystals, 2013, 42(6): 1064-1069.

[9] 彭 进, 夏 琳, 邹文俊. 化学机械抛光液的发展现状与研究方向[J]. 表面技术, 2012, 41(4): 95-98.

    Peng Jin, Xia Lin, Zou Wenjun. Research status and prospect of chemical mechanical polishing slurry[J]. Surface Technology, 2012, 41(4): 95-98.

[10] 莫益栋, 李庆忠. 精细雾化抛光TFT-LCD玻璃基板的抛光液研制[J]. 材料科学与工程学报, 2015, 33(3): 438-441.

    Mo Yidong, Li Qingzhong. Performance of TFT-LCD glass substrate polishing slurry in ultrasound fine atomization CMP[J]. J. of Material Science & Engin., 2015, 33(3): 438-441.

李庆忠, 施卫彬, 夏明光. 磨料对硒化锌雾化施液化学机械抛光的影响[J]. 半导体光电, 2018, 39(6): 815. LI Qingzhong, SHI Weibin, XIA Mingguang. Effect of Abrasive on Ultrasound Fine Atomization CMP of Zinc Selenide[J]. Semiconductor Optoelectronics, 2018, 39(6): 815.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!