作者单位
摘要
1 山西农业大学物理系,山西 太谷 030801
2 中国空间技术研究院西安分院,陕西 西安 710000
通过实验和理论研究连续变量高功率明亮压缩态光场制备实验中高功率种子光注入光学参量放大器引起的绿光诱导红外吸收效应。首先,通过优化实验系统工作参数,提升反馈控制回路的锁定稳定性,当种子光功率为500 mW、泵浦光功率为145 mW时,在分析频率为3 MHz处,获得光功率为200 μW、压缩度为(-10.7±0.2)dB的明亮压缩态光场。然后,根据实验数据,定量分析高功率明亮压缩态光场与压缩真空态光场产生过程中周期极化磷酸氧钛钾晶体的吸收损耗,发现高功率明亮压缩态光场实验系统的总光学损耗为(9±0.05)%,其中由周期极化磷酸氧钛钾晶体吸收导致的内腔损耗为(5.8±0.05)%,占总光学损耗的(64.4±0.05)%。该条件下周期极化磷酸氧钛钾晶体对高功率明亮压缩态光场的吸收系数为(6.0±0.05)×10-2 cm-1。当泵浦光单独注入光学参量放大器时,周期极化磷酸氧钛钾晶体对压缩真空态光场的吸收系数约为2.1×10-4 cm-1。由此可知,当高功率种子光注入光学参量放大器时,绿光诱导红外吸收效应使周期极化磷酸氧钛钾晶体的吸收系数增加了285倍,使内腔损耗成为高功率明亮压缩态光场压缩度的主要影响因素。
量子光学 明亮压缩态光场 绿光诱导红外吸收效应 内腔损耗 
光学学报
2023, 43(10): 1027001
尚栋 1,2,3,4孙兰香 1,2,3,*齐立峰 1,2,3谢远明 1,2,3,5陈彤 1,2,3,4
作者单位
摘要
1 中国科学院沈阳自动化研究所机器人学国家重点实验室, 辽宁 沈阳 110016
2 中国科学院网络化控制系统重点实验室, 辽宁 沈阳 110016
3 中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
4 中国科学院大学, 北京 100049
5 沈阳化工大学, 辽宁 沈阳 110142
激光诱导击穿光谱(LIBS)技术因其在线、原位、多元素同时测量等优点,在物质成分检测上得到广泛应用。但是,LIBS技术常受到自吸收及基体效应的干扰,分析的准确度较低,同时,随着光谱仪分辨率的不断提高,数据维度越来越高,其中包括大量对成分分析无用的冗余信息,这就增加了建模的复杂度。为了降低建模的复杂度,减少光谱数据维度以提取最有用的光谱信息,同时减少自吸收及基体效应的非线性干扰对定量分析精度的影响,在传统偏最小二乘(PLS)方法的基础上,提出了利用循环筛选特征变量来校正自吸收及基体效应影响的非线性PLS模型。以铁精矿矿浆样本为分析对象,结果表明,与传统PLS方法相比,所提出的基于循环变量筛选的非线性PLS模型的定量分析精度显著提高,测试样品的均方根误差(RMSE)从1.15%降到0.70%,决定系数R2从0.51提高到0.86。
光谱学 激光诱导击穿光谱 非线性偏最小二乘模型 变量筛选 吸收效应 基体效应 
中国激光
2021, 48(21): 2111001
作者单位
摘要
1 华中科技大学光学与电子信息学院, 湖北 武汉 430074
2 华中科技大学武汉光电国家研究中心激光与太赫兹功能实验室, 湖北 武汉 430074
4 湖南科技大学物理与电子科学学院, 湖南 湘潭 411201
激光诱导击穿光谱作为一种新型的物质成分检测技术, 具有快速、 实时、 微损、 原位、 多元素同时分析等优势, 目前在环境监测, 食品安全, 选矿冶金, 生物医疗, 太空探测等多个领域都具有广泛应用。 然而, 由于元素谱线的自吸收效应, 使得激光诱导击穿光谱谱线强度降低, 严重时甚至会使特征谱线峰型产生凹陷(即“自蚀”现象), 定标曲线变弯曲, 导致该技术的元素检测精准度变差, 从而无法实现大规模商业应用。 因此, 对激光诱导击穿光谱自吸收效应及其校正方法的探索, 一直以来是学者们研究的热点。 综述了自吸收效应校正方法的研究进展, 分析了自吸收效应产生的物理机制, 分别从实验参数优化、 物理辅助装置、 自吸收模型和校正算法等多个角度对自吸收效应的几种主要校正方法进行了归纳和总结, 并对其优势和缺点进行了对比分析, 其中实验参数优化具有原理简单、 易操作的优势; 能态选择性共振激发自吸收效应抑制效果稳定; 微波辅助激发成本较低, 可同时对多元素实现自吸收抑制; 自吸收系数法可直接量化自吸收效应强弱, 计算步骤简便且所需等离子体参数较少; 基于内参考线的自吸收校正算法计算效率高, 校正效果明显; 光学薄法可直接获取光学薄等离子体谱线, 避免理论误差。 最后, 对自吸收效应未来的研究方向和发展趋势进行了展望。
激光诱导击穿光谱 吸收效应 校正方法 研究进展 Laser-induced breakdown spectroscopy (LIBS) Self-absorption Correction methods Research progress 
光谱学与光谱分析
2021, 41(10): 2989
周瑞其 1,2,3张妮慧 1,2,3张鸿博 1,2,3,*
作者单位
摘要
1 中国科学院空天信息创新研究院, 北京 100094
2 中国科学院大学 光电学院, 北京 100049
3 国家半导体泵浦激光工程技术研究中心, 北京 100094
以LD泵浦光在侧泵模块水冷结构中的传输过程为研究内容, 基于模块结构参数、光波传输特性及介质透光特性, 系统分析了泵浦光在各介质表面和内部的偏振态变化、光强衰减过程及变化规律。重点分析了由介质表面菲涅尔效应和内部吸收效应等造成的光强衰减; 计算了泵浦光在水冷结构中单次往返过程的损耗系数和偏振态变化矩阵。分析结果对于优化模块泵浦效率、增强散热效果等有一定借鉴作用。
侧面泵浦 菲涅尔效应 吸收效应 热致双折射效应 损耗 side pumping Fresnel effect absorption effect thermally induced birefringence effect loss 
半导体光电
2021, 42(2): 212
作者单位
摘要
北京工业大学理学部, 北京 100124
超快光纤激光是目前激光器研究的一个热点。非线性可饱和吸收效应是光纤激光器被动锁模技术的核心。被动锁模技术主要分为真实饱和吸收体和人造饱和吸收体,真实可饱和吸收体包括:半导体可饱和吸收镜(SESAM)和纳米材料等;人造可饱和吸收体包括:非线性偏振旋转演化(NPE)、非线性光环形镜(NOLM)、非线性多模干涉(NLMMI)和Mamyshev再生器(Mamyshev)等。本文综述了最近各类可饱和吸收效应锁模光纤激光器的发展方向,简要阐明工作原理、技术优势、解决所面临问题的方法以及应用领域。
激光光学 超快光纤激光 饱和吸收体 可饱和吸收效应 
中国激光
2021, 48(5): 0501006
张鹏 1,2,3,4孙兰香 1,2,3于海斌 1,2,3齐立峰 1,2,3曾鹏 1,2,3
作者单位
摘要
1 中国科学院沈阳自动化研究所, 辽宁 沈阳 110016
2 中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110016
3 中国科学院网络化控制系统重点实验室, 辽宁 沈阳 110016
4 中国科学院大学, 北京 100049
MgO含量是磷矿浮选过程中最为关注的指标之一。 实现浮选过程中MgO含量的快速检测, 对于优化浮选过程、 提高效率、 降低成本有着非常实际的意义。 因此, LIBS技术被引入到了磷矿中镁元素含量的分析。 常用于LIBS分析的Mg元素特征谱线(如Mg Ⅱ 279.6 nm, Mg Ⅱ 280.3 nm, Mg Ⅰ 285.2 nm)多为共振线, 谱线强度易受自吸收效应影响, 导致谱峰强度下降, 影响分析准确性。 提出一种基于近似Voigt函数的拟合方法: 首先通过近似函数对Voigt函数进行简化; 再通过低含量样本确定谱峰中心和理想条件下的半峰宽; 进而通过计算谱峰所在区域线型的斜率, 确定用于拟合的谱翼区域; 最终通过对谱峰两翼受自吸收效应影响较小的光谱进行拟合, 得到更接近理论线型的谱线。 在定量分析磷矿样品中的镁元素含量应用中, 使用拟合后的Mg Ⅰ 285.2 nm谱线区域面积作为分析谱线强度, 以拟合的Si 288.2 nm谱线区域面积作为参考谱线强度, 使用内标法对镁元素含量进行了标定。 对比未拟合直接内标的方法, 该方法的标定确定系数(R2)由0.923提升至0.998, 均方根误差(RMSE)和平均相对误差(ARE)分别由0.96, 38.65%下降到0.16, 2.79%, 说明该方法使磷矿镁元素定量分析的整体测量准确性得到了有效的提升。
激光诱导击穿光谱 定量分析 谱线拟合 吸收效应 磷矿 Laser induced breakdown spectroscopy (LIBS) Quantitative analysis Spectral profile fitting Self-absorption Phosphorus ore 
光谱学与光谱分析
2020, 40(1): 266
侯佳佳 1,*张雷 1,2赵洋 1尹王保 1,2[ ... ]贾锁堂 1,2
作者单位
摘要
1 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学, 极端光学协同创新中心, 山西 太原 030006
激光诱导击穿光谱(LIBS)定量分析中的自吸收效应不仅会降低谱线强度和增加线宽, 而且使定标结果饱和, 从而影响最终的分析精度。 为了消除该效应的影响, 提出了一种基于共振双线与非共振双线选择的自吸收免疫激光诱导击穿光谱(SAF-LIBS)技术, 通过比较所测谱线强度比值和理论强度比值来确定等离子体的光学薄时刻, 并使用共振线与非共振线来拓展元素含量的可测量范围。 该技术可以分为定标和定量两个分析过程, 其定标过程为: 计算待测元素的共振双线及非共振双线的理论强度比, 通过对比不同待测元素含量样品的共振双线及非共振双线在不同延时下的强度比和理论比, 确定等离子体的光学薄时刻; 使用一系列标准样品建立LIBS非共振线的单变量定标曲线; 利用准光学薄谱线建立共振线和非共振线的SAF-LIBS单变量分段定标曲线。 其定量分析过程为: 先用非共振线和LIBS定标曲线确定未知样品所属的含量分段, 再用准光学薄谱线以及与所属分段的共振或非共振SAF-LIBS定标曲线完成定量分析。 对Cu元素的单变量定标结果表明, 对于共振线, 最佳延时随着样品含Cu量的增加而增加, 且只有当含Cu量低于0.05%时, 才可能获得准光学薄的共振线, 而随着Cu含量的增加, 自吸收变得非常严重, 以至于无法获得光学薄的共振线; 对于非共振线, 当含Cu量在0.01%~30%范围内, 均可获得准光学薄的非共振谱线, 而当Cu含量大于50.7%时, 将无法在等离子体寿命期内捕获到光学薄谱线。 对Cu元素的定量分析结果表明, 基于共振双线与非共振双线的自吸收免疫LIBS技术可以有效地避免自吸收效应的影响, 各分段定标曲线的线性度均大于0.99, 对两个未知样品中Cu元素含量的绝对测量误差分别为0.01%和0.1%, 探测限达到了1.35×10-4%, 最大可测量范围拓展至50.7%。
激光诱导击穿光谱 吸收效应 光学薄 元素分析 Laser-induced breakdown spectroscopy Self-absorption effect Optically thin Elemental analysis 
光谱学与光谱分析
2020, 40(1): 261
作者单位
摘要
1 中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
2 西北大学化学与材料科学学院, 陕西 西安 710127
得益于独特的二维量子限制效应以及层与层之间耦合微扰的消除, 石墨烯、过渡金属硫化物MX2(M=Mo,W,Ti,Nb等; X=S,Se,Te等)、黑磷等二维层状半导体材料与其体材料相比, 在电子学、光子学等性能上都有本质的提高。以中国科学院上海光学精密机械研究所近几年的相关研究成果为主要对象, 结合国内外研究进展, 重点介绍了二维材料的制备方法、物理性质和超快非线性光学性能以及相关器件的研究进展, 并对其前景进行了展望。
材料 非线性光学 纳米结构 过渡金属硫化物 黑磷 饱和吸收效应 
中国激光
2017, 44(7): 0703004
王帝 1,2陆继东 1,2董美蓉 1,2姚顺春 1,2[ ... ]李诗诗 1,2
作者单位
摘要
1 华南理工大学电力学院, 广东 广州 510640
2 广东省能源高效清洁利用重点实验室, 广东 广州 510640
将激光诱导击穿光谱技术(LIBS)应用于煤中热值的检测。 针对传统的通道面积归一化方法未能考虑煤质检测的物理/化学机制、 从而限制了所建模型在精确性、 准确性、 可重复性的情况, 提出了一种新型的基于光谱偏差产生原理的校正模型。 模型选取了19组煤样品, 随机选择其中15组为校正集, 用于建立热值的定量分析模型, 剩余四种为预测集, 用于对所建模型进行检验与评价。 模型从光谱偏差因素的产生因素出发, 通过原子光谱发射理论结合斯塔克展宽公式, 推导出LIBS条件下自吸收效应的影响机制及其所引起的偏差的修正方法。 通过元素间相互干扰结合基体效应的微观机理对基体效应进行光谱的偏差分析, 并根据K系数法的思路对LIBS中元素间相互干扰进行修正, 通过建立光谱的电子密度, 等离子体温度, 元素浓度的数值模型对基体效应引起的光谱偏差进行深度修正。 因而经过自吸收效应—元素间相互干扰—基体效应深度修正后, 模型对于所研究样品范围内其拟合优度R2=0.967, RMSEP=0.49 MJ·kg-1, RMSE=0.45 MJ·kg-1, MRE=2.42%, ARE=1.64%的同时RSD=5.79%, RSDP=8.10%。 相对于传统的通道面积归一化-多元线性回归方法的0.405, 8.28 MJ·kg-1, 4.14 MJ·kg-1, 22.85%, 52.48%, 18.28%, 32.85%, 表明测量的精确度与准确度都得到明显的提高, 证明该模型具有很好的应用价值。
热值 吸收效应 元素间相互干扰 基体效应 LIBS LIBS Calorific value Self-absorption Inter-elements interference Matrix effect 
光谱学与光谱分析
2016, 36(8): 2607
作者单位
摘要
1 皖西学院电气与光电工程学院, 安徽 六安 237012
2 中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
利用积分球比较法测量灯具光通量时,常采用分光光谱法和光度法,这两种方法都需要引入修正系数以补偿灯具自吸收效应造成的光通量损失。研究了分光光谱法和光度法测量灯具光通量自吸收效应补偿的差异,从两种方法测量灯具光通量的基本原理出发,得到了光通量修正值的表达式。通过实验测量数据和理论分析,探讨了不同光谱分布的辅助灯对两种方法测量灯具光通量的影响。研究结果表明,分光光谱法测得的光通量修正值与辅助灯相对功率分布无关,光度法测得的光通量修正值与辅助灯相对功率分布有关,分光光谱法选择不同光谱的辅助灯测得的光通量修正值具有唯一性,而光度法选择不同光谱的辅助灯测得的光通量修正值不同。
测量 光通量修正值 辅助灯 相对功率分布 吸收效应 
激光与光电子学进展
2016, 53(10): 101204

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!