作者单位
摘要
1 西安交通大学核科学与技术学院,陕西西安 710049
2 西北核技术研究院,陕西西安 710024
3 西安电子科技大学空间科学与技术学院,陕西西安 710126
4 模拟集成电路国家重点实验室,重庆 400060
5 中国科学院特殊环境功能材料与器件重点实验室,新疆乌鲁木齐 830011
异质结带隙渐变使锗硅异质结双极晶体管 (SiGe HBT)具有良好的温度特性,可承受-180~+200 ℃的极端温度,在空间极端环境领域具有诱人的应用前景。然而,SiGe HBT器件由于材料和工艺结构的新特征,其空间辐射效应表现出不同于体硅器件的复杂特征。本文详述了 SiGe HBT的空间辐射效应研究现状,重点介绍了国产工艺 SiGe HBT的单粒子效应、总剂量效应、低剂量率辐射损伤增强效应以及辐射协同效应的研究进展。研究表明,SiGe HBT作为双极晶体管的重要类型,普遍具有较好的抗总剂量和位移损伤效应的能力,但单粒子效应是制约其空间应用的瓶颈问题。由于工艺的不同,国产 SiGe HBT还表现出显著的低剂量率辐射损伤增强效应响应和辐射协同效应。
锗硅异质结双极晶体管 单粒子效应 总剂量效应 低剂量率辐射损伤增强效应 电离总剂量/单粒子效应协同效应 电离总剂量/位移损伤协同效应 SiGe heterojunction bipolar transistors Single Event Effects Total Ionizing Dose effect Enhanced Low Dose Rate Sensitivity synergistic effect of total ionizing dose and sing synergistic effects of ionizing dose and displacem 
太赫兹科学与电子信息学报
2022, 20(6): 523
陈思远 1,2,3于新 1,2陆妩 1,2王信 1,2[ ... ]郭旗 1,2
作者单位
摘要
1 中国科学院 新疆理化技术研究所 特殊环境功能材料与器件重点实验室, 乌鲁木齐 830011
2 中国科学院 新疆理化技术研究所 新疆电子信息材料与器件重点实验室, 乌鲁木齐 830011
3 中国科学院大学, 北京 100049
研究了P型帽层和共源共栅(Cascode)结构氮化镓(GaN)功率器件高/低剂量率辐照损伤效应。试验结果表明,P型帽层和Cascode结构GaN功率器件都不具有低剂量率损伤增强效应(ELDRS); Cascode结构GaN功率器件总剂量辐照损伤退化更明显; P型帽层结构的GaN功率器件抗总剂量能力较强。分析了二者的退化机制。试验结果为GaN功率器件空间应用提供了有益参考。
氮化镓功率器件 总剂量效应 低剂量率损伤增强效应 GaN power device total ionizing dose effect enhanced low dose rate sensitivity (ELDRS) 
微电子学
2021, 51(3): 444
作者单位
摘要
厦门大学化学化工学院, 福建 厦门 361005
表面增强拉曼光谱(Surface Enhanced Raman Spectroscopy, SERS)技术与针尖增强拉曼光谱(Tip Enhanced Raman Spectroscopy, TERS)技术常用于解决电化学表面和界面上的问题, 研究细胞生物体系。利用表面等离子基元的效应, 通过设计特殊的纳米材料可以获得更高的信号增强效果。为了提高空间分辨率, 针尖增强拉曼技术利用针尖处高度局域的光电场, 可将空间分辨率推进到2~5 nm。另外, 通过发展单粒子的检测方法, 研究了单粒子的生长以及相互作用的过程。在材料表面, 可获得每一个位点的特征光谱, 实现了同时跟踪整个表面的反应以及变化。并通过该方法, 研究了微观粒子以及宏观表面化学反应中的区别和联系。随着SERS在灵敏度、选择性、重现性、时间和空间分辨率等方面的进一步提高, SERS将在生物和医学领域得到更重要的应用。
表面增强效应 细胞生物体系 电化学 针尖增强拉曼 定量检测 surface enhanced Raman spectroscopy cellular and biological systems electrochemistry tip enhanced Raman quantitative detection 
光学与光电技术
2021, 19(4): 1
聂勇 1,2闫二艳 2,3,*杨浩 2黄诺慈 1,2[ ... ]胡海鹰 2
作者单位
摘要
1 中国工程物理研究院 研究生院,四川 绵阳 621999
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
3 高功率微波技术重点实验室,四川 绵阳 621900
为研究碰撞等离子体对电磁波传输性质的影响,基于电磁波在介质中的传输特性,将等离子体作为一种特殊的介质,针对一定实验条件下的高功率微波(HPM)大气等离子体与一定范围电磁波的透射特性开展了实验、理论及仿真研究。研究发现:S波段HPM在50 Pa真空下形成的等离子体对不同频率的电磁波透射特性具有较大影响,且在一定频率范围内有规律地出现电磁波透射信号增强效应现象;获取了一系列不同频率连续电磁波穿过HPM等离子体区域的透射波形,并对波形进行了归一化处理,在32.4 GHz下,连续电磁波穿过有无等离子体区域的透射系数约有2倍的差异。建立了仿真模型,获得31.5~32.5 GHz范围内透射系数分布曲线图,穿过等离子体的电磁波出现透射增强效应,且在某些频点上出现了约1.9倍的透射增强。该研究成果为HPM大气等离子体在隐身、应急通讯、黑障通讯等方面的应用提供了重要的技术支撑。
等离子体 电磁波传输 透射增强效应 黑障通讯 plasma electromagnetic wave transmission transmission enhancement effect black barrier communication 
强激光与粒子束
2021, 33(2): 023003
作者单位
摘要
上海理工大学光电信息与计算机工程学院, 上海 200093
为了减弱金属基底对表面增强荧光的淬灭效应, 设计了增强效果更好的荧光增强基底。采用化学生长二氧化硅的方法对纳米多孔金 (NPG)表面进行修饰, 避免荧光分子和 NPG表面直接接触引起的淬灭效应, 在 SiO2@NPG表面分别组装上罗丹明 6G(R6G)和辐射中心波长为 700 nm的量子点 (QD 700)。通过探测分析荧光光谱, 可以得出: 二氧化硅包覆的基底可以使表面增强荧光得到显著的增强, 并且二氧化硅厚度对荧光强度有调节作用; 在基底增强量子点荧光信号的同时, 量子点和 NPG之间还出现非辐射的能量转移现象, 二氧化硅的厚度对能量转移同样有调节作用, 厚度约为 5 nm时能量转移现象最显著。本实验为基于荧光能量转移的检测以及设计更好的荧光增强基底提供了参考。
纳米多孔金 (NPG) 量子点 表面增强效应 荧光共振能量转移 nanoporous gold (NPG) SiO2@NPG SiO2@NPG quantum dot (QD) surface enhanced fluorescence fluorescence resonance energy transfer 
光学仪器
2019, 41(3): 61
作者单位
摘要
上海师范大学生命与环境科学学院, 上海 200234
α-熊果苷是一种能够止咳平喘的植物提取物, 有关它与蛋白质的相互作用及作用机理报道较少。 应用光谱学与分子对接技术研究了在不同条件下α-熊果苷与人血清白蛋白(HSA)的相互作用。 研究结果显示: 随着α-熊果苷浓度的增大, HSA荧光强度得到了显著增强并且荧光光谱发生了蓝移。 利用荧光增敏的各种有关方程求得了α-熊果苷在不同温度下与HSA作用的结合常数, 通过范特霍夫方程计算HSA与α-熊果苷相互作用过程中的ΔH=-23.29 kJ·mol-1和ΔS=40.96 J·mol-1·K-1, 说明α-熊果苷与HSA之间的主要作用力是氢键和疏水作用力。 通过紫外吸收光谱、 同步荧光光谱、 三维荧光光谱等光谱学方法研究发现α-熊果苷使HSA的构象发生改变。 通过HSA与α-熊果苷作用前后圆二色二级结构的定量分析可得知, HSA与α-熊果苷复合物的形成使蛋白质螺旋稳定性降低。 最后应用分子对接实验, 验证了α-熊果苷与HSA间的相互作用位点在HSA的siteⅡ(亚域ⅢA), α-熊果苷能通过氢键和疏水作用力等多种作用力很好的结合在亚域ⅢA的疏水腔中。 从实验中获得的数据能够阐明α-熊果苷对HSA的作用机制, 同时能够有助于理解α-熊果苷在人体的储藏运输过程中对蛋白质功能的影响。
α-熊果苷 人血清白蛋白 荧光增强效应方程 分子对接 Alpha arbutin Human serum albumin Fluorescence enhancement effect equations Molecular docking 
光谱学与光谱分析
2018, 38(11): 3489
作者单位
摘要
重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆 400044
本文利用密度泛函理论研究了糠醛分子的拉曼光谱和Furfural-MX(M=Ag,Au,Cu)复合物的表面增强拉曼光谱。在单个糠醛分子的拉曼光谱中,计算出各拉曼峰的振动模式,并结合分子电荷密度和静态电势图分析了峰位偏差的具体原因。研究了Furfural-MX复合物的原子数量和种类对糠醛SERS化学增强因子的影响和相应电荷转移的改变。本研究加深了人们对糠醛分子表面增强拉曼散射电荷转移效应的认识。
密度泛函理论 糠醛 化学增强效应 拉曼光谱 density functional theory furfural chemical enhancement factors Raman spectrum 
光散射学报
2018, 30(2): 120
作者单位
摘要
浙江大学 光电科学与工程学院 光及电磁波研究中心, 杭州310058
设计了一种10 m掺铥光纤级联于3 m大模场光子晶体光纤末端的结构,利用400 fs、1 550 nm脉冲光产生孤子自频移,在入射光功率相同的情况下,掺铥光纤末端的孤子频移量比大模场光纤末端多100~150 nm,平均多30%左右.孤子与泵浦光在掺铥光纤末端的输出光谱表明,残留泵浦光作用于Tm3+,在1.8~2.1 μm范围产生受激辐射,从而增强了拉曼效应,导致孤子自频移增强.实验结果揭示了一种增强孤子自频移效应的方法,对于了解孤子在光纤中频移特性和提高基于孤子自频移的可调谐光源的调谐范围等具有参考意义.
非线性光学 可调谐光源 级联光纤 孤子 孤子自频移 增强效应 Nonlinear optics Tunable light sources Cascaded fiber Solitons Soliton self-frequency shift Enhanced effect 
光子学报
2017, 46(8): 0814004
作者单位
摘要
1 国防科学技术大学机电工程与自动化学院, 湖南 长沙 410073
2 中国人民解放军 63880部队光电对抗试验和评估技术重点实验室, 河南 洛阳 471003
3 国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
在飞秒单脉冲激光损伤 HfO2/SiO2薄膜样品实验中, 随着激光能量密度升高, 膜层从缺陷导致的点损伤发展到整层剥落, 损伤区域轮廓由模糊变清晰.研究表明, 尺度在纳米量级的颗粒缺陷会产生局部的场增强效应, 该效应与薄膜干涉场叠加, 造成了阈值损伤阶段损伤区域出现大量损伤点, 且由于飞秒激光对包括缺陷在内的薄膜材料的本征损伤特性, 使其损伤行为较为确定, 随着激光能量的提升, 薄膜出现更大面积的规则烧蚀区, 此时干涉场的作用上升到主导地位, 膜层的整层剥落行为掩盖了缺陷的诱导作用.
飞秒激光 光学薄膜 激光损伤 纳米颗粒缺陷 增强效应 femtosecond laser optical coatings laser damage nanoscale particle defects light field intensification 
红外与毫米波学报
2017, 36(3): 361
武大猷 1,2,*文林 1汪朝敏 3何承发 1[ ... ]刘元 1,2
作者单位
摘要
1 中国科学院特殊环境功能材料与器件重点实验室, 新疆电子信息材料与器件重点实验室, 中国科学院 新疆理化技术研究所, 新疆 乌鲁木齐830011
2 中国科学院大学, 北京100049
3 重庆光电技术研究所, 重庆400060
对电荷耦合器件进行了不同剂量率的γ辐照实验, 通过多种参数的测试探讨了剂量率与电荷耦合器件性能退化的关系, 并对损伤的物理机理进行分析。辐照和退火结果表明: 暗信号和暗信号非均匀性是γ辐照的敏感参数, 电荷转移效率和饱和输出电压随剂量累积有缓慢下降的趋势; 暗场像素灰度值整体抬升, 像元之间的差异显著增加; 电荷耦合器件的暗信号增量与剂量率呈负相关性, 器件存在潜在的低剂量率损伤增强效应。分析认为, 剂量率效应是由界面态和氧化物陷阱电荷竞争导致的。通过电子-空穴对复合模型、质子输运模型和界面态形成对机理进行了解释。
电荷耦合器件 暗信号 低剂量率损伤增强效应 暗场像素统计 charge coupled device dark signal enhanced low-dosed rate sensitivity dark pixel statistics 
发光学报
2016, 37(6): 711

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!