光电工程, 2021, 48 (5): 200364, 网络出版: 2021-09-04   

基于黑硅微结构的全硅PIN光电探测器

All-silicon PIN photodetector based on black silicon microstructure
作者单位
1 电子科技大学电子薄膜与集成器件国家重点实验室,四川 成都 610054
2 中国电子科技集团第四十四研究所,重庆 400060
3 中国电子科技集团第二十四研究所,重庆 400060
摘要
本文报道了一种基于黑硅微结构的全硅PIN光电探测器。该器件结合了黑硅结构宽光谱高吸收的特性,以及PIN光电探测器高量子效率高响应速度的特点,通过在传统硅PIN光电探测器结构的基础上增加黑硅微结构层,在不影响响应速度的条件下,提高了探测器在近红外波段响应特性。并且针对纵向结构垂直入射PIN光电探测器时量子效率与响应速度相矛盾的问题,提出了解决方案。测试结果表明,该器件的量子效率可达80%,峰值波长为940 nm,光响应度达到0.55 A/W,暗电流降至700 pA,响应时间为200 ns。
Abstract
An all-silicon PIN photodetector based on black silicon microstructure is reported. The device combines the characteristics of broad spectrum and high absorption of black silicon structure and the characteristics of high quantum efficiency and high response speed of PIN photodetectors. By adding a black silicon microstructure layer based on the traditional silicon PIN photodetector structure, the response characteristics of the detector in the near-infrared band are improved without affecting the response speed. A method is proposed to solve the contradiction between quantum efficiency and response speed in the vertical structure of the PIN photodetector. The test results show that the quantum efficiency of the device can reach 80%, and the peak wavelength is 940 nm. The light responsivity reaches 0.55 A/W, and the dark current is about 700 pA. The response time is 200 ns.
参考文献

[1] Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate[J]. Opt Express, 2007, 15(21): 13965–13971.

[2] Virot L, Benedikovic D, Szelag B, et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction[J]. Opt Express, 2017, 25(16): 19487–19496.

[3] Benedikovic D, Virot L, Aubin G, et al. 25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures[J]. Photonics Res, 2019, 7(4): 437–444.

[4] Chen H, Verheyen P, De Heyn P, et al. Dark current analysis in high-speed germanium p-i-n waveguide photodetectors[J]. J Appl Phys, 2016, 119(21): 213105.

[5] Chen H, Verheyen P, De Heyn P, et al. -1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond[J]. Opt Express, 2016, 24(5): 4622–4631.

[6] Cho H M, Barber W C, Ding H J, et al. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging[J]. Med Phys, 2014, 41(9): 091903.

[7] Vaseashta A, Khudaverdyan S. Advanced Sensors for Safety and Security[M]. Dordrecht: Springer, 2013.

[8] Ho C K, Robinson A, Miller D R, et al. Overview of sensors and needs for environmental monitoring[J]. Sensors, 2005, 5(2): 4–37.

[9] Menon P S, Shaari S. Surface versus lateral illumination effects on an interdigitated Si planar PIN photodiode[J]. Proc SPIE, 2005, 5881: 58810S.

[10] Tasirin S K, Menon P S, Ahmad I, et al. High performance silicon lateral PIN photodiode[J]. IOP Conf Ser: Earth Environ Sci, 2013, 16: 012032.

[11] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Appl Phys Lett, 1998, 73(12): 1673–1675.

[12] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Appl Phys Lett, 2001, 78(13): 1850–1852.

[13] Savin H, Repo P, von Gastrow G, et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency[J]. Nat Nanotechnol, 2015, 10(7): 624–628.

[14] Winkler M T, Sher M J, Lin Y T, et al. Studying femtosecond-laser hyperdoping by controlling surface morphology[J]. J Appl Phys, 2012, 111(9): 093511.

[15] Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl Phys A, 2004, 79(7): 1635–1641.

[16] Sher M J. Intermediate band properties of femtosecond-laser hyperdoped silicon[D]. Cambridge, Massachusetts: Harvard University, 2013.

[17] Baker-Finch S C, Mcintosh K R. Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells[J]. Prog Photovolt, 2013, 21(5): 960–971.

[18] Peng K Q, Xu Y, Wu Y, et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small, 2005, 1(11): 1062–1067.

[19] Shen M Y, Crouch C H, Carey J E, et al. Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Appl Phys Lett, 2004, 85(23): 5694–5696.

[20] Hamamatsu Photonicas. Silicon photodiode S1336-8BK[EB/OL].[2021-01-12]. http://www.hamamatsu.com.cn/product/17585.html.

[21] Hamamatsu Photonicas. Silicon photodiode S3477-04[EB/OL].[2021-01-12]. http://www.hamamatsu.com.cn/product/17626.html.

[22] Hamamatsu Photonicas. Silicon photodiode S12698-02[EB/OL].[2021-01-12]. http://www.hamamatsu.com.cn/product/18699.html.

郑泽宇, 罗谦, 徐开凯, 刘钟远, 朱坤峰. 基于黑硅微结构的全硅PIN光电探测器[J]. 光电工程, 2021, 48(5): 200364. Zheng Zeyu, Luo Qian, Xu Kaikai, Liu Zhongyuan, Zhu Kunfeng. All-silicon PIN photodetector based on black silicon microstructure[J]. Opto-Electronic Engineering, 2021, 48(5): 200364.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!