半导体光电, 2020, 41 (2): 252, 网络出版: 2020-06-17  

二硫化钼-石墨烯垂直异质结的制备与表征

Preparation and Characterization of Graphene-Molybdenum Disulfide Vertical Heterojunction
作者单位
江南大学 物联网工程学院 电子工程系, 江苏 无锡 214122
摘要
以采用化学气相沉积法(CVD)生长的单层石墨烯为导电电极、四硫代钼酸铵水溶液为电解质, 通过电化学沉积法合成了二硫化钼/石墨烯(MoS2/graphene)垂直异质结。将合成的MoS2/graphene垂直异质结通过CVD在氢气(H2)和氩气(Ar)环境下进行退火处理。利用拉曼光谱、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)系统地分析了样品的物质成分、表面形貌和厚度等。这种简单、环保、低成本的制备大面积MoS2/graphene垂直异质结的方法具有普遍适用性, 为其他垂直异质结的制备开辟了新途径。
Abstract
By using the monolayer graphene grown by chemical vapor deposition (CVD) as the conductive electrode and ammonium tetrathiomolybdate aqueous solution as the electrolyte, the vertical heterojunctions of molybdenum disulfide-graphene (MoS2/graphene) were synthesized by electrochemical deposition method. The synthesized MoS2/graphene vertical heterojunction was annealed by chemical vapor deposition(CVD) system under the hydrogen and argon atmosphere. The Raman spectroscopy (Raman), X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscope (AFM) were used to systematically analyze the material composition, surface morphology, and thickness of the resulting MoS2/graphene vertical heterojunctions. This simple, environment-friendly, and low-cost method for synthesizing large-area MoS/graphene vertical heterojunctions has universal applicability, which opens a new way for the synthesis of other vertical heterojunctions.
参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Novoselov K S, Falko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[3] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chem., 2013, 5(4): 263-275.

[4] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnol., 2012, 7(11): 699-712.

[5] Franklin A D. Nanomaterials in transistors: From high-performance to thin-film applications[J]. Science, 2015, 349(6249): 2750.

[6] Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nature Mater., 2014, 13(12): 1135-1142.

[7] Lee C H, Lee G H, Van der Zande A M, et al. Atomically thin p-n junctions with Van der Waals heterointerfaces[J]. Nature Nano., 2014, 9(9): 676-681.

[8] Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.

[9] Zhang W, Chuu C P, Huang J K, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures[J]. Sci. Rep., 2014, 4(1): 3826.

[10] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

[11] Wan X, Chen K, Xu J. Interface engineering for CVD graphene: current status and progress[J]. Small, 2014, 10(22): 4443-4454.

[12] Wan X, Chen K, Chen Z, et al. Controlled electrochemical deposition of large-area MoS2 on graphene for high-responsivity photodetectors[J]. Adv. Funct. Mater., 2017, 27(19): 1603998.

[13] Wan X, Chen K. High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons[J]. Chem. Mater., 2012, 24(20): 3906-3915.

[14] Cheng Z, Zhou Q, Wang C, et al. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices[J]. Nano. Lett., 2011, 11(2): 767-771.

[15] Liu K K, Zhang W, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano. Lett., 2012, 12(3): 1538-1544.

[16] Ponomarev E A. Electrochemical deposition of MoS2 thin films by reduction of tetrathiomolybdate[J]. Thin Solid Films, 1996, 280(1/2): 86-89.

顾杰, 颜元凯, 万茜. 二硫化钼-石墨烯垂直异质结的制备与表征[J]. 半导体光电, 2020, 41(2): 252. GU Jie, YAN Yuankai, WAN Xi. Preparation and Characterization of Graphene-Molybdenum Disulfide Vertical Heterojunction[J]. Semiconductor Optoelectronics, 2020, 41(2): 252.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!